

Evolution of MEMS Test Solutions

Mario Correa Dr. Janusz Bryzek Fairchild Semiconductor

Outline

- MEMS Market and Product Overview
- Challenges Facing MEMS Test Systems
- MEMS Test Systems Evolution
- MEMS Wafer Level Testing
- MEMS Final Product Testing
- Summary

MEMS Market Forecast

Source: Yole 2012

Industries Driving Growth Rates

SEMICONDUCTOR®

MEMS Mobile Products Maturity (Growth 2009-2012)

MEMS Test Systems Challenges

- Stimuli challenge:
 - Apply external physical / chemical / optical stimuli such as acceleration, rotation, pressure, magnetic field, vibration, etc. to calibrate sensors.
 - May require temperature compensation.
- Packaging challenge:
 - Industry presses for smaller package footprints eventually trending towards a 1x1 mm footprint.
 - Current package probe technology is reaching its density of pin limitations.
 - MEMS probes are likely to migrate to MEMS test systems.
 - Tester induced stress on DUTs may impact calibration results.
 - Needs custom test head designs.
- Capacity challenge:
 - Enabling high UPH capabilities.

MEMS Test Systems Challenges

- Wafer probe challenge:
 - Mechanical / optical / chemical testing on the wafer to provide good known die (KGD).
- Test cost challenge:
 - Test cost for current generation of acceleration and gyro sensors has already reached 8.4% of selling price (Yole 2012) and needs to go down in the future.
- Time to market challenge:
 - Requires modular design of test systems.
- Scalability challenge:
 - Larger volumes require multiple test systems.
 - As volumes continue to expand into the multi billion range, UPH per test system must increase significantly.
- Dual functionality challenge:
 - Sensors start to use complex ASICs with uC and memories.
 - MEMS testers start to embed IC testing during idle time of MEMS testing.

Test Equipment, Early Phases

- Early Inertial Test Systems, 1960's: non-MEMS Sensors
 - Random vibration and rates applied via simple drive systems.
 - Custom developed systems designed in house.
- Test System Development, 1970's
 - Initial industrial interest focused on aerospace and process control applications.
 - Late 1970's development expanded into the automotive industry: engine controls for emissions and fuel economy.
 - Custom developed systems designed in house.

Test Equipment, 1980's – 1990's

• MEMS Test System Development, 1980's

- Driven by the manufacture of pressure sensors.
- In the late 1980's low cost / mass-produced silicon accelerometers emerged.
- Late 1980's also saw the commercialization of inertial sensors in automotive applications.
- Test systems become more complex as new sensor types are introduced, however they are still custom systems developed in house.
- MEMS Test System Development, 1990's
 - First dedicated MEMS test company emerged for automotive pressure and accel test systems.
 - The integration of CMOS interfaces into MEMS sensors adds additional complexity to test systems.
 - Mid 90's sees development of custom ATE systems designed in house incorporating off-the-shelf stimulus equipment, data acquisition equipment and communication interfaces.
 - Begin to see fully integrated systems developed by companies specializing in test, measurement and automation.

Test Equipment, 2000's - 2012

• MEMS Test System Development, 2000's

- Universal MEMS standards do not exist.
- The MEMS law is still in effect "one product one process one package – one test procedure" – however changes are emerging.
- Offshoots from traditional IC ATE vendors begin to emerge, specializing in MEMS.
- Mid 2000's design begins to shift towards "standardized" test solutions.

MEMS Test Development, Today

- Over the last five years ATE vendors have made large strides in providing standardized test solutions for those sensors in high-volume production.
- The need to provide KGD in the final assembly process has lead to new test systems focused on wafer level testing.
- Vendors have expanded their IC test system capabilities to include MEMS testing.
- New vendors focusing solely on MEMS package level testing have entered the market place.
- Emergence of Test Labs specializing in MEMS testing services.

Test System Evolution, MEMS Inertial Test Systems

	1997	2005	2012
Cost	\$150 -250 K	\$1.8 M	\$1 – \$2 M
UPH	75	2000	7,500 – 10,000
Axis	1	1	6
Sensor Type	Gyro, accel, pressure	Gyro, accel, pressure	Gyro & accel
Description	Custom in-house	Custom – 3 rd Party	MEMS ATE Vendors
Cost/UPH/Axis	\$2700	\$900	\$30

Test System Sample, Mid 2000's

MEMS Single Axis Test Cell

Source: Systron Donner

Test System Sample, Late 2000's

Source: LV Sensors

EMERGENCE OF MEMS WAFER LEVEL TEST

Dynamic Wafer Testing

• Dynamic Wafer Testing - the ability to move a MEMS element and measure the movement or behavior.

- Benefits
 - Determines performance at wafer level.
 - Identify Known Goods Die.
 - Prevents yield loss multiplication at final assembly.
 - High-volume capabilities.
- May be implemented for Characterization, Engineering and Production Testing
 - Modular: commonality between test system types including hardware, prober and software.

Dynamic Wafer Testing, Inertial Sensors

- Measurement Capabilities Include:
 - Resonant Frequency
 - Spring Constant
 - f3dB Frequency
 - Q Factor
 - Gyro Quadrature Error
 - Mechanical Hysteresis
- Advantages:
 - Validates MEMS Design
 - Monitors Fab Process
 - Increases final product yield
- Detects Failures and Defects:
 - Stiction
 - Particulate Obstruction
 - Broken Elements

Solidus Technologies Wafer Probe Test

- Tests the "Dynamic" Mechanical Performance of MEMS Capacitive Elements at Wafer-Level, including Natural Frequency, Damping, Quality Factor, Stiction, Gyro Quadrature Error, Frequency, Phase, Amplitude, etc.
- Volume Capability: configurable to + 7,500 UPH
- Modular System, components include:
 - Tester & Software
 - Test Head
 - Note, prober is not included
- System allows for reusability
 - Production Test is a subset of Engineering Test.
 - Common components: tester, test head, and software.

Source: Solidus Technologies

SPEA Wafer Probe Test

- Provides test capability for ASIC Test and Wafer Parametric / Dynamic Testing.
- Scalable architecture.
- Commonality between tester for wafer probe and final package test.

FINAL PACKAGE TEST

MEMS Test System Infrastructure, Final Package Test

- Driving factors in ATE development:
 - Need for package-level calibration and verification.
 - Rapid volume expansions, high UPH numbers, scalability.
 - Commonality between engineering and production systems, periodic validation of production platform.
 - Mixed-signal testing (digital communication and analog measurements).
 - High volumes and need for faster test times.

MEMS Test System Architecture, Final Package Test

- System design is gravitating to the Test Cell approach
 - Expandable pick and place handlers and test heads.
 - Modular stimulus components, tri-temp capable.
 - Standardized tester and test software tailored to the MEMS device.
 - Multiple sort options.
 - Multiple loading options including socket, tray, strip and active load boards.
 - Can be scoped from low volume engineering tester to high-volume production systems.
- Handler:
 - Expandable to meet engineering and production requirements.
 - MEMS handlers are reusing IC handler designs.
 - Support strip, tray and singulated configurations.

MEMS Test System Architecture, Final Package Test

- MEMS Stimulus Unit
 - Common to engineering and production systems.
 - Custom developed by each vendor based on sensor type.
- Tester:
 - Expandable to meet engineering and production requirements.
 - Commonality with dynamic wafer probe.
- Thermal Testing
 - Approaches:
 - Multiple temp stations, one for each test temperature.
 - Individual temp environment for each device under test, clam shell approach.
- Sorter
 - Tray to tray, tray to reel, etc.

MEMS Test System Architecture, Final Package Test

- Loading Options:
 - Strip
 - Based on existing test methodology.
 - DUTs singulated after test.
 - High Parallelism
 - Application may be limited due to possible calibration issues arising after singulation.
 - Socket:
 - Singulated DUTs
 - Expandable
 - Stress exerted on package may impact calibration at final assembly.
 - Tray
 - Singulated DUTs
 - DUTs inserted in customized trays which secure them during test.
 - High Parallelism
 - Active Load Board
 - Integrates local measurement capabilities into stimulus unit.
 - Reduce tester resources.
 - Multiple trays allow for higher parallelism and scalability.

- Modular Test Cell Approach, turn-key system
- Stimulus Unit
- Tester
- Tri -Temp Capable
- Tray System, 32 Site

Source: Focus Test

Tray, Singulated

DUTS

- Modular Test Cell Approach, turn-key system
- Socket (expandable to 32 up)
- Multi Sort Options
- Tri Temp Capable

- Modular Approach
- Stimulus Unit & Hander
- Tester and Sorter must be subcontracted
- Socket
- Temperature Capable

Stimulus Unit & Handler

Source: Multitest

- Provide Tester and Software
- Integrate with Third-Party Handler, Stimulus Units, Thermal Chambers and Sorters

- Other MEMS ATE Vendors / Test Labs / Partners
 - Advantest
 - Centipede Systems
 - Acutronic
 - Ideal Aerosmith

Conclusion / Summary

- The MEMS sensor industry will continue to be driven by an incremental increase in performance, and decrease in package size and cost.
- Rapid volume growth is forcing MEMS Test to gradually adopt the highvolume IC infrastructure.
- ATE vendors specializing in MEMS Test Systems as well as speciality MEMS Test Labs have emerged to meet industry needs.
- The criticality of KGD for final assembly is driving the development of MEMS dynamic wafer level testing.
- MEMS test system development will be driven by new sensors for which a high-volume test infrastructure doesn't yet exist, such as:
 - Multi-sensory systems on a chip or in a package
 - MEMS/NEMS integration
 - Sensor fusion
- Combined, all of these items create major challenges and business opportunities for the test industry.

