Morphing the Semiconductor Outsourcing Business Model: Wafer Level Packaging

Jim Walker, Gartner
MEPTEC Packaging Technology Symposium
October 23, 2014
Santa Clara, CA
Fundamental Shifts Driving the Industry

• Convergence
 - Applications
 - Manufacturing

• Proliferation of Specialized Applications
 - Internet of Things

• Big Data and the Cloud
 - Integrated data: Social, Business, and Government
Fundamental Changes: Semiconductor Demand

- Electronic industry now more pervasive and is more affected by macro-economy
 - Electronic and semiconductor industries are maturing
 - End market electronic equipment sales are more than ever tied to individual consumer spending
- Diversification of electronic equipment drivers:
 - No single “killer app” or market, but need everything connected
- Value chain migration puts increasing value into both system and software
- Supply chain management model requires rapid response
Implications for Semiconductor Manufacturing: Demand Side

- **Time pressures:** Must be profitable now!
 - Early entry into market requires higher price/margins

- **Quick response to changing demand critical to overall profitability**
 - Short lead times for equipment and materials

- **Speed to implementation more critical**
 - **Time** to market
 - Time to higher yields and lower costs

- **New technology key to success**
 - Higher performance/features must command better margins

- **Shorter production-ready products times**
 - Market pressures drive acceleration of Moore’s law
Fundamental Changes: Semiconductor Supply

- Long term revenue growth rate of Semiconductor Industry has slowed to single digits
 - Competitive advantages key to success
- Processed silicon is becoming specialized as outsourcing grows
 - Availability of advanced processes in the hands of a few
 - Foundries and SATS
 - Equipment manufacturers
- Manufacturing fades as competitive differentiator (Samsung, TSMC)
 - Market value moving to IP: System/device design; software
 - Outsourcing is on the rise
- Increasing concentration of manufacturing capacity in the hands of a few companies
 - Increasing risk as fab cost rise - 450mm, FinFET
- Foundry model separates design value from manufacturing value
Implications for Semiconductor Manufacturing: Supply Side

➢ Time/Cost **pressure on profitability** increased
 Speed up the yield curve
 Improve cost reductions

➢ **Tight process control** required to achieve high yields of highest performing parts.
 Design for Manufacturing
 Design for Test

➢ **New technology** key to success – WLP, 3D/TSV
 Smaller features
 New materials
 More complex structures and packages -- **smaller, lighter, faster, thinner** -- still continues on
Net Effect on Industry Cycles

- Demand-side requires fast response to meet changing conditions
- Supply-side requires rapid response to changing conditions
 - Decreasing fab ramp times makes capacity available on shortened time scale
- Equipment industry speed of response is competitive advantage
 - Ability to respond quickly to provide rapid capacity increases
- Effect on business cycles:
 - Cycles still occur
 - Challenge is to be able to successfully manage your business within cycles
Semiconductor Manufacturing: Critical Uncertainties

Outsourcing Service Providers
- How to differentiate?
- What new services?
- To do 3D, or not?
- To design, or not?
- Where is my niche?

Capital Equipment Vendors
- Who will be my clients in 2017?
- How fast do I need to invest in 450mm?
- Which adjacent markets?
- Merge with whom?

Semiconductor Materials Vendors
- Which client survives?
- Which new technology?
- Where is my ROI?
- Merge with whom?
- Exit semiconductors?

How to maintain and grow profits?
Semiconductor Manufacturing: Increasing Costs Bring Fundamental Changes

1. Increasing R&D costs and Technology Challenges
 - New technologies needed to continue Moore’s Law through decade
 - Increasing R&D costs force collaboration
 - Increasing risks that needed technologies won’t be available in time forces search for expensive alternatives.

2. Increasing fab costs:
 - Reduces the number of semiconductor manufacturers who can afford to stay at the leading edge to a handful of companies
 - Increases fab size, reduces the number of fabs being built.
 - Increases pressure for cost reduction through 450mm initiative

3. Increasing design costs:
 - Makes the current pace of Moore's Law economically questionable for leading edge manufacturing except for the biggest vendors with highest volume parts.
 - Increases the need to find lower cost design and manufacturing solutions.

Key Question: Can the fundamental economics of the industry continue?
Semiconductor Manufacturing: Overall Situation and Key Trends

Fab Costs Surge…

![Graph showing Fab Costs Surge from 2004 to 2020](image)

… While Capex Growth Slows

![Graph showing Capex Growth Slows from 2010 to 2020](image)

… Moore’s Law drives mfg

![Graph showing Moore’s Law from 2010 to 2020](image)

… and 450mm R&D Breaks the Bank

![Graph showing Cumulative Equipment R&D](image)
Semiconductor Business Models Must Adapt to the Changing Markets

- Greater reliance on R&D partnerships
- Multi-sourcing
- **Consolidation** of fabless and IDM companies
- Foundry manufacturing: more cost-competitive
- SATS manufacturing: supply chain value added vs. costs
- More design services from foundries and SATS
- Market segmentation
 - Leading-Edge
 - Mainstream
 - Trailing edge
Semiconductor Manufacturing Models

- **IDM**
 - Large Internal Fab Capacity
 - Use Foundry/SATS as Capacity Buffer

- **Asset-Light IDM**
 - Internal Fabs for Technology Development and Early Production
 - Foundries and JV Fabs for Volume Production
 - Internal and SATS for Back-end Packaging/Test

- **Transition IDM**
 - Foundries are Primary Source of Production Capacity
 - May Employ JV Fabs for Capacity Assurance
 - Divesting Back-end to SATS

- **Fabless**
 - Rely on Foundries/SATS for All Production Needs
Wafer Level Packaging – Driving the Integrated Outsourcing Model (IOM)

Vertical OEM
- System Design
- Chip Design
- Silicon Fab
- Pkg/Assy Test

IDM
- System Design
- Chip Design
- Silicon Fab
- Pkg/Assy Test

IOM
- System Design
- Chip/Pkg Design
- Silicon Foundry-Bump
- Pkg/Assy Test

SATS/OSAT
- System Design
- Package Design
- Wafer Bump
- Pkg/Assy Test

Aligned Technology through collaboration, not ownership

© 2014 Gartner, Inc. and/or its affiliates. All rights reserved.
Wafer-Level Packaging: Driving the industry to the Convergence of Outsourcing

- Fab
- Packaging
- PCB Manufacturing
- WLP - 3D - TSV
- SIP - MCP - PCBA
- Vertical/Virtual Integration
 - Full Service
 - System Level Assembly
Wafer-Level Packaging: Changing the Manufacturing Environment

- Change in IC design rules
 - True system-level design possible
- Supply chain restructured
 - Equipment and materials suppliers redefined
- Business relationships altered
 - “One-stop shopping”
- Improved logistics
 - Reduced cycle time
- More vertical, continuous process
 - Regional manufacturing
Supply Chain Restructuring: Equipment Vendor Concerns

- Migration to flip chip, redistribution and WLP reduces need for wire bonders and traditional die-attach machines
- Changes in molding processes: eliminates traditional molds and encapsulation presses
- Absence of lead frame materials eliminates traditional trim, form, and dambar removal equipment
- Absence of traditional plating means no solder plating equipment
Supply Chain Restructuring: Material Vendor Concerns

- Migration to flip chip eliminates die attach polymers, gold and aluminum wire
- Absence of traditional molding process eliminates epoxy molding compound
- Absence of lead frame substrate reduces usage of copper, AL-42, and solder
But New Opportunities for Equipment Growth

- Flip chip bonders (pick-and-place)
- Tape and reel machines
- Wafer thinning/backgrinding/bonding
- Material dispensing (adhesive, glob, underfill, solder jet)
- Wafer handling
... But New Opportunities for Material Growth

- New solders to replace lead
- Underfills
- Conductive adhesives
- Coatings
- Substrates (PCB, flex, tape)
- Higher-temperature or thermoplastic polymers
- Wafer mask for bumping/coating
But Also New Opportunities for Outsourcing Growth

- Device Design with Package Integration
- System-on-Package (SOP)
- Flexible Electronics
- LED Manufacturing
- Solar
- IoT
- Cloud Computing and Storage
- SSD
Rapid Migration to Smaller Wafer Nodes Increases Demand for Array Packaging

Billions of Dollars per Year

- 16/14 nm
- 20 nm
- 28 nm
- 32 nm
- 45 nm
- 65 nm
- 90 nm
- > 90 nm
WLP Package Forecast: 2013-2018

Wafer-Level Package Forecast, 2013-2018
(Millions of Units)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>16,342</td>
<td>19,870</td>
<td>22,675</td>
<td>25,915</td>
<td>31,149</td>
<td>36,400</td>
<td>17.4%</td>
</tr>
</tbody>
</table>

Source: Gartner (July 2014)
SATS Unit Demand by Package: Advanced Technology Drives Growth

2013

2018

- WLP
- TSV
- Leadframe
- Laminate
- Flip Chip
The Big Challenge

- Can Foundry do Wafer Level Packaging Processes at 20 - 25% Margin?

or.....

- Will Customers pay the Foundry margin of 45 - 50% when SATS can do it for 20 - 25%?
The Final Outcome for WLP/3D/TSV

- Optimization of performance, size and cost is system dependent. Maximize manufacturing integration.

- Vertical re-integration, but for Outsourcing Services
 - Solves the margin dilemma
 - Leading edge technologies are implemented
 - Manufacturing assets are maximized
 - Costs lowered

So……..
Summary

• Companies should re-consider the vertical integration model of semiconductor manufacturing to improve performance and reduce costs.

• As SoC manufacturing becomes increasingly difficult and costly, companies should consider packaging options for integration as this enables innovation more rapidly.

• However, as mass customization grows, semiconductor companies still need to actively consider all wafer and packaging integration methods to harvest the speed and density benefits that will result.