

# Critical Technologies for Thin Wafer Handling in 2.5D & 3D Integration



# CONTENTS

- Markets for 3D/2.5D Die Stacking using TSV
- Integrated Process Flows for 2.5D/3D
- Thin wafer handling challenges and Solutions
  - Edge Trimming
  - Temporary Bonding/Debonding
    - Technology Comparison
    - Progresses in Temp bond/debond
  - Dicing a thin wafer
- Chip attachment
- Summary



# 3D/2.5D Driver - Target markets

|      | Market                                              | Device Types                          | Current<br>Configuration | Future Configuration<br>with TSV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Approximate<br>Intro. Timing |
|------|-----------------------------------------------------|---------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 3D   | Memory                                              | DRAM                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2011~2012                    |
| 3D   | Mobile<br>Application<br>Processor                  | Application<br>Processor<br>AP (+ BB) |                          | 0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2013~2014                    |
| 2.5D | Logic with<br>memory<br>using TSV<br>interposer     | GPU, Gaming<br>Console                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2013~2014                    |
| 2.5D | Logic + Analog<br>using TSV<br>interposer           | Network,<br>Telecommunication         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2012~2013                    |
| 2.5D | Partition of IP<br>blocks<br>with TSV<br>interposer | FPGA                                  |                          | Rest of Conception of Concepti | 2012~2013                    |
| 3D   | High<br>Performance<br>Computing                    | CPU, MCM, etc                         |                          | Full '3D IC'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2016~                        |
|      |                                                     |                                       |                          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TATSChipPAC                  |

3

### Why do we need a thin wafer for 3D/2.5D?

- TSV depth is limited by TSV diameter and aspect ratio in the process and design
- Wafers need to be thinned to expose a tip of the TSV from the back side



5um dia via and 5 Oum depth, AR~10



# Who will handle thin wafers?

Business Models and Foundry/OSAT Collaboration - Material

flow and infrastructure evolution:

|                         | Device | TSV Fab                                                              | Post-TSV<br>process                                                    | TSV<br>Assembly                                  | Typical<br>Application                                                                     |
|-------------------------|--------|----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------|
| Via-First<br>Via-Middle | Fab    | Fab                                                                  | ✓ Fab/OSAT<br>-Via exposure &<br>capping; wfr thinning<br>- RDL, uBump | ✓ OSAT<br>- CtC/CtW/CtS bond<br>- fine gap ufill | • AP + Memory                                                                              |
| TSV<br>Inter-<br>poser  | Fab 🛛  | <ul> <li>FAB/OSAT</li> <li>Passive Si via<br/>fabrication</li> </ul> | ✓ FAB/OSAT<br>-Via exposure &<br>capping; wfr thinning<br>- RDL, uBump | ✓ OSAT<br>- CtC/CtW/CtS bond<br>- fine gap ufill | <ul> <li>Si partitioning<br/>(e.g. FPGA, GPU +<br/>Mem)</li> <li>Logic + Analog</li> </ul> |

### **OSAT's Positions:**

- Mid-end process and Back-end assembly for Via-Middle Application Processor in Mobile Market
- Mid-end process for TSV interposer and Back-end assembly for GPU/MPU and network processor market
- TSV fabrication of TSV interposer for Heterogeneous Integration of less demanding 2.5D market





### Front, Mid and Backend Processes





### **Micro-bumps**

- Bumped and thin wafer handling
- Bumping at the active (FRONT) side of a wafer
  - Lead-free solder (SnAg)
  - Cu column (Cu/SnAg) for micro-bumps





Cu column (Cu/SnAg)



### **Edge Trim**

• Reduce edge chipping and wafer cracking during or after back-grinding



# **Temporary Bonding and Debonding**

STATSChip

| Method                   | Thermal cure +<br>Thermal release                                                                                                                  | Thermal cure + Room<br>temperature release                                                                                                                   | UV cure + Laser Release                                                                                                            |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Carrier                  | Glass or Silicon                                                                                                                                   | Glass or Silicon                                                                                                                                             | Glass                                                                                                                              |
| Bonding<br>method        | <ol> <li>Coat adhesive on<br/>carrier</li> <li>Bond device<br/>wafer to carrier</li> </ol>                                                         | <ol> <li>Coat pre-cursor +<br/>release layer on device<br/>wafer</li> <li>Coat elastomer on<br/>carrier</li> <li>Bond device wafer to<br/>carrier</li> </ol> | <ol> <li>Coat a polymer on carrier</li> <li>Coat adhesive on device<br/>wafer</li> <li>Bond carrier to device<br/>wafer</li> </ol> |
| Curing                   | < 200degC                                                                                                                                          | < 200degC                                                                                                                                                    | UV cure                                                                                                                            |
| Debonding<br>method      | <ol> <li>Apply heat and<br/>slide off carrier<br/>from device wafer</li> <li>Use solvent to<br/>dissolve adhesive<br/>from device wafer</li> </ol> | <ol> <li>Mechanically tilt carrier<br/>and remove from device<br/>wafer</li> <li>Clean and rinse device<br/>wafer.</li> </ol>                                | <ol> <li>Apply laser to remove<br/>LTHC layer</li> <li>Remove glass</li> <li>Peel off adhesive from<br/>device wafer</li> </ol>    |
| Debonding<br>temperature | <200degC                                                                                                                                           | Room temp                                                                                                                                                    | Room temp                                                                                                                          |

### Adhesive Requirement for Temporary Bond/Debond

- High Temperature resistance
- Chemical resistance
- High mechanical strength during process between temporary bonding and debonding
- Protect bumps
- Void free and Residue free
- Low out-gassing and easy to clean
- Capability for low TTV and ultra thin wafer processes
- Low stress removal of a carrier
- Compatible with the integrated process flow of mid-end and back-end
- Low Cost, high throughput and high yield



### **Thickness and TTV Control**

- Carrier thickness and its TTV
- Adhesive thickness and its TTV
- Total stack thickness and TTV
- Voids in the Adhesive
- Bonded wafer bow and warpage
- In-line Metrology for Temporary Bond/Debond Process

STATSChi

# Various Temporary Bond/Debond Options - UV Release



### Confidential Various Temporary Bond/Debond Options - Thermal Release





Typical Defects after Temporary De bonding

- Remove the defects using optimized processes and materials



## **Stealth Dicing**

- Internally focused laser process and internally damaged zone
- No water cooling and no heat affected zone
- Great chip yield and high throughput for ultra-thin wafers



## **Stealth Dicing**

Confidential

- Option 1 : Stealth Dicing after Debonding : Laser through dicing tape
- Option 2 : Stealth Dicing before Debonding : Laser directly to wafer backside



# Confidential **Thin Die Flip Chip Attachment** Chip-to-Chip/Substrate (CtC,CtS) Chip-to-Wafer (CtW) Flip Chip Top Die <u>. . . . . . . . . .</u> Bottom TSV Interposer -----Top flipchip Die Bottom TSV Die 35 50 Mm STATSChip 104 BSE 19

# Thermal Compression Bonding - thin die to Substrate

- Alignment Control of a thin die
- Minimize warpage
- Stand-off height: Minimize variation

✓ Tier-1 Die to sub X-section & stand-off image



(Unit: um)



# Thermal Compression Bonding - Thin die to die

- Alignment Control of a thin die
- Minimize warpage
- Stand-off height: Minimize variation

✓ Tier-2 Die to Tier-1 Die X-section & stand-off image



# SUMMARY

- 3D/2.5D with TSV markets are emerging in mobile and high performance device areas.
- OSATs can play a major role in mid-end and back-end processes with experiences in wafer bumping, thin wafer handling and backend processes.
- All vehicles with TSV need thin, bumped wafer handling.
- New technologies have been developed to prevent wafer cracking and edge chipping
- Temporary bond/debond tools have been developed. There are a few options. It has to be optimized in the integrated process flow of mid-end and back-end processes
- A great deal of progresses have been made in equipments, materials, design and process optimization.

