
MEMS Packaging for IoT Products

2015 MEPTEC Technology Symposium Enabling the Internet of Things

Leland "Chip" Spangler, Ph.D. Aspen Microsystems, LLC 719-440-5753

Outline

- What is the IoT?
- System Partitioning and MEMS for IOT
- MEMS Packages for IoT Applications
- Custom MEMS Packages for IoT Applications
- Case Studies

IoT Application Examples

- Industrial
 - Process monitor
 - Inventory & asset monitor
- Consumer/Wearable
 - Health/activity monitoring
 - Entertainment
- Home/Business
 - Security/access control
 - Energy Optimization
- Medical
 - Implantables
 - Remote diagnostics
 - Inventory & patient tracking

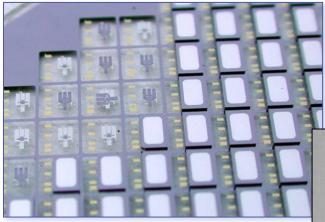
- Automotive
 - Infotainment
 - Navigation
 - Telemetry (C2C and C2I)
- Environment
 - Water quality
 - Atmosphere
 - Agricultural monitoring
- Infrastructure
 - Structural health
 - Pipeline monitoring
 - Traffic control
 - Surveillance

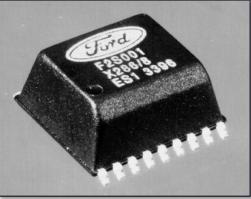
Sensors and MEMS for IoT Edge Devices

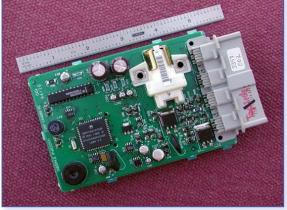
- Sensors convert environmental information to an electrical signal
- Some sensors are MEMS based
 - MEMS sensors are evolving at a rapid pace (size, function, cost)
- MEMS devices for IoT
 - Standard products/standard packages
 - Custom products in standard packages
 - Fully custom products/packages
- MEMS Packages for IoT
 - Cost, time to market challenges
 - Always desirable to use a standard product when possible
 - Custom MEMS product and package is a last resort

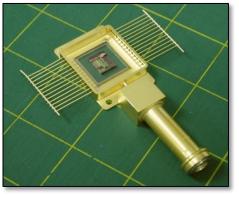
• What criteria determine if a custom package is needed?

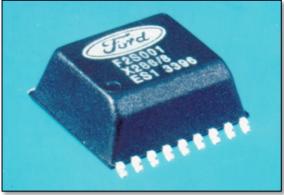
System Partitioning and MEMS Packaging


- What criteria can be examined to determine if a custom MEMS package is needed for an IoT application
 - Consider package hierarchy of electronic packaging
 - System->Module->Board->Component->Wafer
 - Consider the requirements for any electronic package
 - Signal transmission over various energy domains
 - Die protection
 - Power management
 - Usability
- Examining the following application requirements provides the answer.
 - Power budget
 - Form Factor
 - Sensing Interface


Package Hierarchy in Electronics

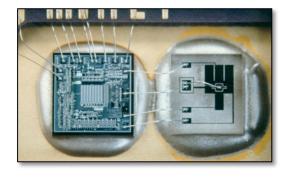

- Level 4 System level
- Level 3 Box level
- Level 2 Board level
- Level 1 Component level
- Level 0 Wafer-level

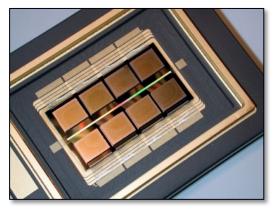

2015 MEPTEC MEMS Technology Symposium


Aspen Microsystems Confidential

Four Functions of a MEMS Package

- 1. Signal Transmission
 - Interface between the macro & micro worlds
 - Transmit desired signal energy into & out of the device
- 2. Die Protection
 - Environmental control
 - External forces
- 3. Power Management
 - Distribute power to components
 - Dissipate waste heat
- 4. Usability
 - Desired size & shape
 - Simplify socketing
 - Aesthetic appearance





Spangler & Kemp, Transducers 1995

Evolution of MEMS Devices

- Earliest MEMS Sensors-> Data oriented
 - Pressure sensors and accelerometers
 - Transducer chip and interface chip
- More complex MEMS -> Function driven
 - DNA Analysis
 - Gyroscopes
 - Ink Jets
 - Optical devices, Displays
- MEMS Evolution -> Information oriented
 - Inertial measurement systems
 - Sensor signals analyzed via an algorithm in a microprocessor
 - Package houses multiple die

Winkler, et. al., 2006 Hilton Head

Considerations for IoT MEMS Packaging

- System partitioning and IoT "Edge Devices"
 - Which functions should be combined with the sensor in the edge device?
 - Signal conditioning
 - Sensor algorithm
 - Energy harvesting
 - Data transmission
 - Which functions are incorporated into other parts of the system?
- Consider three factors in determining if a custom MEMS package is required
 - Power Budget
 - Form Factor
 - Sensing Interface

Power Budget Considerations

Power Budget

>1 Watt

• Very Low Power

< 1 microwatt

- Autonomous devices
- Package should minimize interconnections loss
- Potential for battery or solar cell integration into package
- MEMS-based energy harvesting opportunities require custom packages

- Less restricted Power
 - Wireline connection mean power is less of an issue
 - Fewer partitioning constraints
 - Standard components should be suitable

Form Factor Considerations

Form Factor

10 cm

Small and Constrained

< 1 mm

- Application has physical and/ or size constraints
- Smart watch, implantable devices, etc.
- New/unique applications often require package customization

- Large and unconstrained
 - Application is physically large allowing for flexible packaging
 - Automobile, factory floor, etc.
 - Rarely are custom packages required

2015 MEPTEC MEMS Technology Symposium

Sensor Interface Considerations

Sensor Interface

Sealed

• Exposed

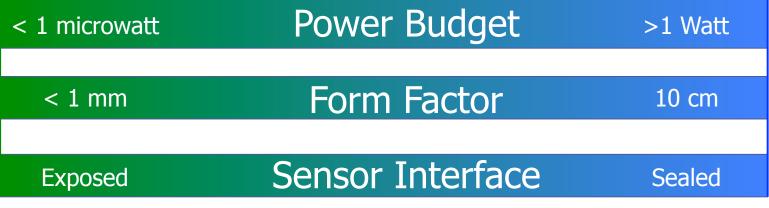
Exposed

- Package creates a port from environment to the sense element
- Pressure sensor, water quality sensor, fingerprint sensor, etc.
- Often requires customization at some level of package hierarchy

- Sealed
 - Energy transmission to transducer through the package body
 - Inertial sensors, magnetic sensors, etc.
 - Best to use a MEMS device in a standard package

MEMS Package Considerations for IoT Applications

• By considering these three factors, one can determine if a custom MEMS package might be required.


< 1 microwatt	Power Budget	>1 Watt
< 1 mm	Form Factor	10 cm
Exposed	Sensor Interface	Sealed

Custom MEMS package might be required Custom MEMS package probably not required

IoT Applications

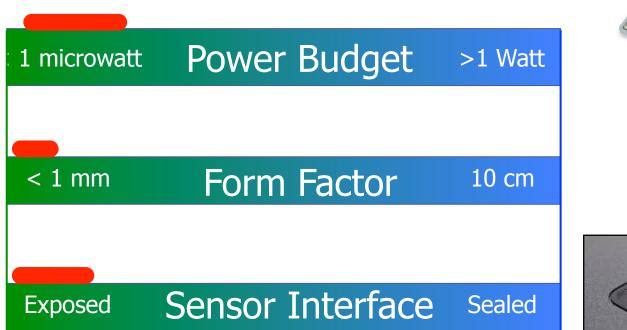
- Industrial
 - Process monitor
 - Inventory & asset monitor
- Consumer/Wearable
 - Health/activity monitoring
 - Entertainment
- Home/Business
 - Security/access control
 - Energy Optimization
- Medical
 - Implantables
 - Remote diagnostics
 - Inventory & patient tracking

- Automotive
 - Infotainment
 - Navigation
 - Telemetry (C2C and C2I)
- Environment
 - Water quality
 - Atmosphere
 - Agricultural monitoring
 - Infrastructure
 - Structural health
 - Pipeline monitoring
 - Traffic control
 - Surveillance

Case Studies to Illustrate ...

- Consider the following applications:
 - Biometric Secure Card
 - Medical Diagnostics
 - Water Quality Sensor
- Evaluate each application according to the three MEMS IoT package criteria
 - Power Budget
 - Form Factor
 - Sensor Interface

Biometric Secure Cards


- An IoT device that verifies identity prior to use
- Applications:
 - OTP payments
 - Secure access
 - Location tracking
- Components
 - Secure microprocessor
 - Thin film battery and/or Solar cell,
 - Alpha-numeric display
- Credit card form factor
- IoT MEMS Device
 - Biometric sensor -> fingerprint sensor

Finger Print Sensor Package for a Secure Card

- Biometric fingerprint sensor
 - Used in portable electronics since early 2000's
 - Early form factors allowed standard packaging
 - Integration of exposed sensor requires customization

2015 MEPTEC MEMS Technology Symposium

Aspen Microsystems Confidential

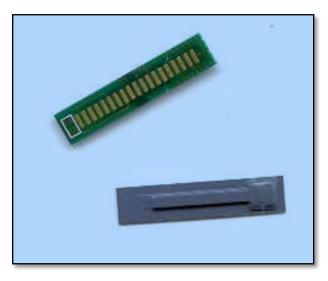
Finger Print Sensor Evolution

- Conventional finger print sensors
 - First introduced in early 2000's
 - Form Factor: Too thick
 - Power budget: Could always be smaller
 - Sensor Interface: Exposed
- iPhone 5s fingerprint sensor w custom package

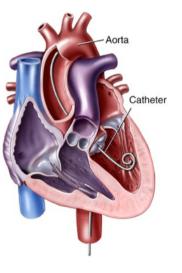
2015 MEPTEC MEMS Technology Symposium

Aspen Microsystems Confidential

Finger Print Sensor Package Customization

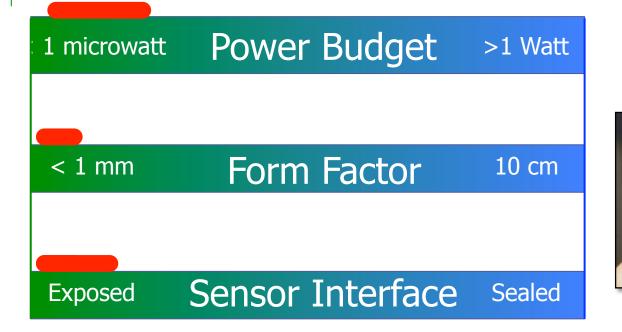

- Conventional finger print sensors
 - Form Factor: Too thick
 - Power budget: Could always be smaller
 - Sensor Interface: Exposed
- Custom MEMS package
 - Adapted backgrind process
 - Die stress compensation
 - Very thin substrate, low loop wirebonding Thin encaps<u>ulation</u>

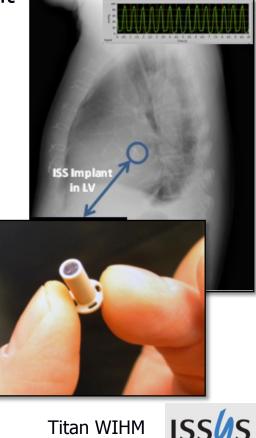
2015 MEPTEC MEMS Technology Symposium

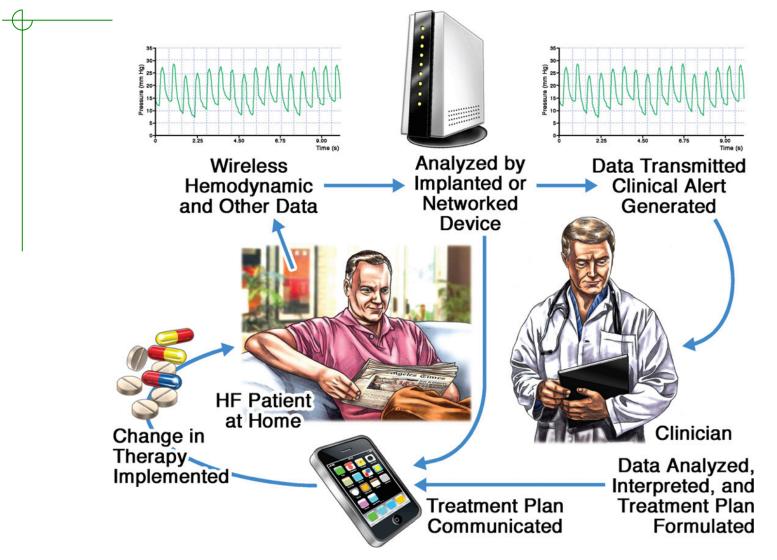

Medical Diagnostics

- Real-time, continuous patient monitoring
 - Hemodynamics -> Heart attack
 - Neurostimulation -> Pain management
 - Thrombosis monitoring -> Blood thinners
- Two application spaces
 - Implantable monitor
 - Sensor & electrodes connected to a titanium box
 - Fully biocompatible
 - Size and power constraints
 - Wireless connection for power/data
 - Disposable cartridge
 - Analysis cartridge plugs into a hand held or desktop "reader"
 - Less challenging biocompatiblity requirements
 - Cost is a major factor
 - Form factor constraints

Implantable Medical Diagnostics


- An IoT device that monitors/treats patient conditions
 - Hemodynamics
 - Neuromodulation
 - Diabetes, dry eye, thrombosis, etc.
- Chronic implant with companion unit
- Implant functions
 - Sensing -> pressure, chemistry, electrical potential
 - Stimulation -> electrical, drug delivery
 - Biocompatible packaging
 - Wireless power (RF, battery), Wireless data (RF)
- Companion unit
 - RF interface to implant
 - Data management via personal app and/or internet




Implantable Medical Devices

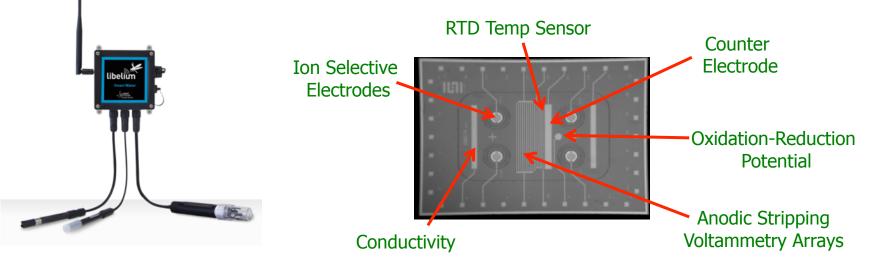
- Real-time hemodynamic monitoring
 - Monitor pressure directly in the left side of heart
 - Implant interfaces with companion readout unit
 - Readout unit facilitates internet connection

In-Home Hemodynamic Monitoring

A. Bui, G. Fonarow, "Home Monitoring for Heart Failure Management," J Am Coll Cardiol. 2012 Jan 10; 59(2)

Environmental Monitoring

- IoT devices that monitor the chemical makeup of the environment
 - Surface water, drinking water
 - Landfills, fracking sites
 - Air quality factory, motor vehicles
- Sampling systems have evolved
 - Grab or dip -> Lab analysis
 - Handheld devices -> On site analysis
 - Autonomous -> Continuous, remote analysis
- Application
 - Usually not form-factor constrained
 - Data collection from edge devices via a consolidator or polling (cellular access)



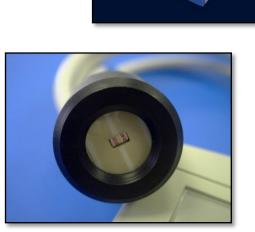
Aspen Microsystems Confidential

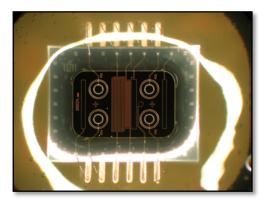
Municipal Drinking Water Quality Monitor

- Two types of municipal water distribution systems
 - Tree/branches -> Dead ends -> Stagnant water
 - Continuous loop -> No stagnant water
- Branched systems must have a monitor at ends of system
 - Many different chemical measurements must be taken
 - On-site analysis moving to continuous monitor (IoT edge device)
 - MEMS version will simplify installation, reduce cost

2015 MEPTEC MEMS Technology Symposium

Aspen Microsystems Confidential


Municipal Drinking Water Quality Monitor


- Continuous monitoring of water
 - Continuous immersion in water (long life required)
 - Implant interfaces with companion readout unit
 - Readout unit facilitates internet connection

Power Budget

Form Factor

Sensor Interface

1 microwatt

< 1 mm

Exposed

>1 Watt

10 cm

Sealed

Summary

- Most IoT applications don't require a custom MEMS package
- By considering three factors one can quickly determine if a custom MEMS device/package might be needed
 - Power budget
 - Form factor
 - Sensor interface
- IoT applications that might benefit from custom MEMS package include:
 - Medical diagnostics and monitoring
 - Portable electronics
 - Environmental sensors
 - Other small, low power, exposed sensor devices