

Conductive Die Attach Film - CDAF

Higher Reliability Conductive Die Attach Films: Compatible with Si and GaAs Wafers

MEPTEC Luncheon – December 11th 2013

Presented by Shashi Gupta

Contents

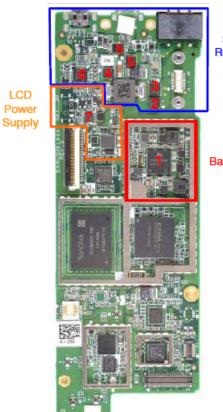
- 1. Market & Package Trend
- 2. Current Material Challenges & Needs
- 3. cDAF Technology
- 4. Bulk vs In-package measurements
- 5. Product Roadmap
- 6. cDAF on GaAs wafer technology
- 7. cDAF Advantages
- 8. Summary

Market Trends

Smaller, Faster, Higher Functionalities

- Higher density design
- Higher functionalities
- Faster signal speed
- Power Management
- Lower TCoO
- Reduce package thickness

Applications space covers consumer, mobile, computing, communication health care, energy, industrial and automotive.


Market Trends An Example – Source Prismark

RIM PLAYBOOK POWER MANAGEMENT

LCD

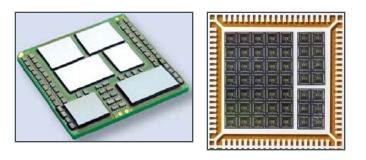
Power

- Texas Instruments TWL6030 Power Manager 1. ٠
 - 256-CSP
- TI/CICLON CSD25401 P-Channel NexFET Power MOSFET 2. • QFN3.3x3.3
- Fairchild FDMC510P P-Channel PowerTrench MOSFET З.
 - QFN 3.3x3.3 •
- Fairchild FDMC7200 Power Trench MOSFET "non catalogue" 4.
- Alpha and Omega AON740130V P-Channel MOSFET 5. DFN 3x3mm •
- 6. Intersil ISL9519 Highly Integrated Narrow VDC System Voltage Regulator and Battery Charger controller
 - QFP-28 •
- Texas Instruments TPS63031 High Efficient Single Inductor 7. Buck-Boost Converter w/1-A Switches
 - QFN-10 •
- 8. Texas Instruments PS63020 High Efficiency Single Inductor Buck-Boost Converter with 4A Switch
 - QFN-14 •
- Texas Instruments TPD12SO15YFFR HDMI Companion Chip 9. with Step-up Converter, 12C Level Shifter, and High-speed ESD Clamps
 - WSCSP-28

Synchronous Rectifier Battery Charger

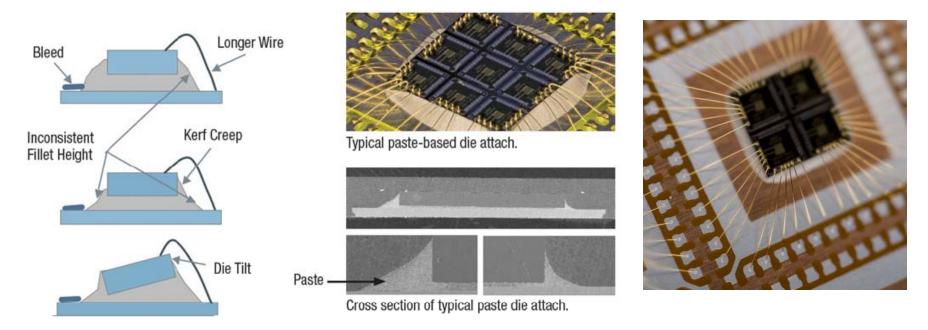
Baseband PMU


HDMI Power Supply


Package Trends - Wirebonded


Higher Functionality & Efficiency

- Miniaturized packages (QFN, DFN, SOs)
 - Increased die-to-pad ratio
 - In some case D/P ratio close to 1.0
- Thinner packages (QFN, SO, QFP)
 - Packages <0.3mm
 - Thinner die <75um
 - Thinner DA bondline thickness <20um
- Higher density packages
 - Multi-dies packages
 - SiP LGA/PBGA



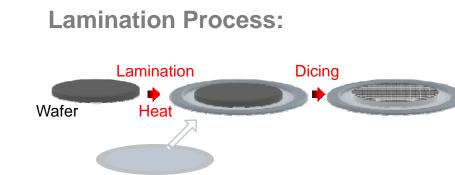
Current Material Challenges on LFs

Conducting Die Attach Paste

- **Dispensing:** Optimize dispense patterns for various die sizes 0.2 x0.2 mm to >10x10mm.
- **Fillet & Bleed:** Forces engineers to have a minimum keep out zone around die
- Bondline Control: Specially for smaller die BLT control is challenging and leads to die tilt
- Kerf creep: For thinner wafers uneven fillet height can lead to kerf creep

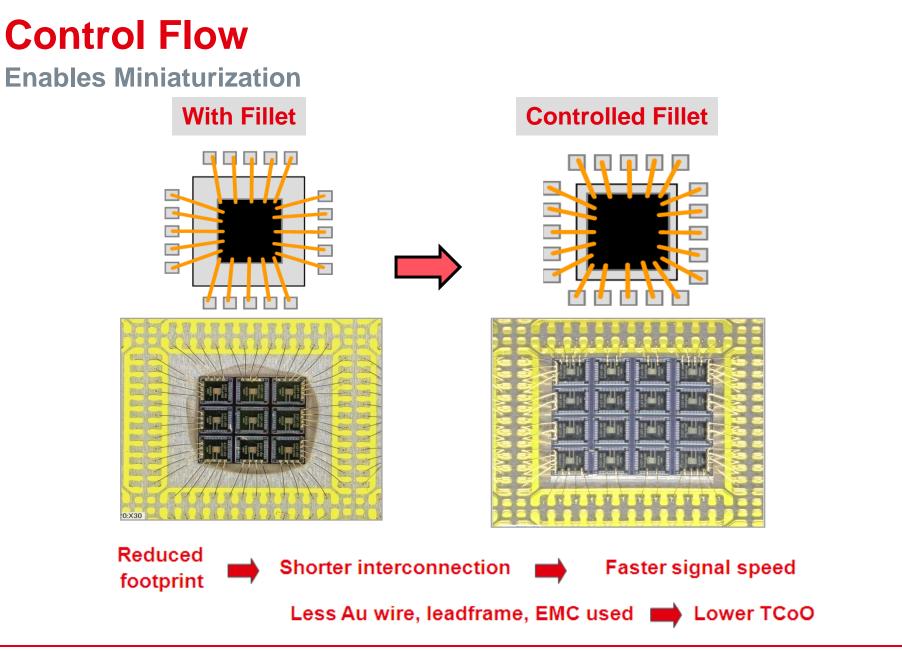
Future Material Needs

What does the market really need moving forward ?


- Lower Cost
- •Higher Reliability
 - Zero Delamination
 - Zero Bleed
 - Minimal fillet
- Consistent BLT control
- Thin Wafer handling capability
 - Low to no outgassing
 - Drop in solution

New Materials – Conductive Die Attach Films

Controlled flow technology



Precut conductive die attach films offer a single step lamination to wafer back

Precut cDAF

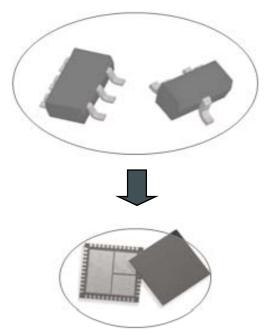
Thin Wafer Handling

Package with Fillet

Die Attach Paste

Controlled Fillet Height

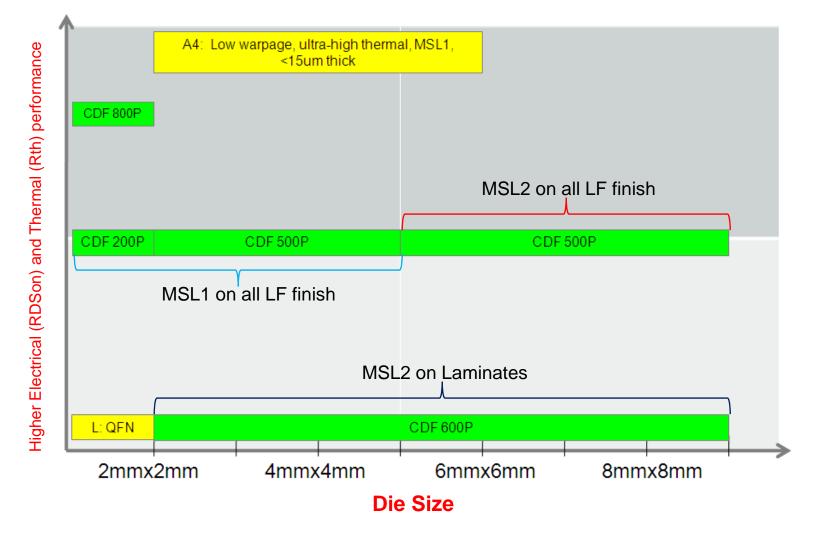
- Thinner wafer handling enabled
- Consistent Thinner bondlines achieved
 - Eliminated Fillet
 - Eliminated bleed



Advantages of Control Flow

Package level

- Enables emerging packages:
 - Miniaturized
 - High density
 - Ultra thin
- Indirectly improves package performance:
 - Faster signal speed (shorter interconnection)
 - Better power management (low RdSon)
 - Better heat dissipation
- Indirectly reduces TCoO:
 - Cheaper design choice (SiP vs. SoC)
 - Less material used (high packaging density)
 - Improve yield


Footprint reduction (>50%): Multiple packages to one using multiple die.

CDAF technology is well-aligned with emerging package trends

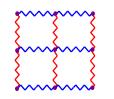
Henkel's Solution to Control Flow

Product Space

Why CDAF has higher reliability

Paste and Film comparison

Paste material

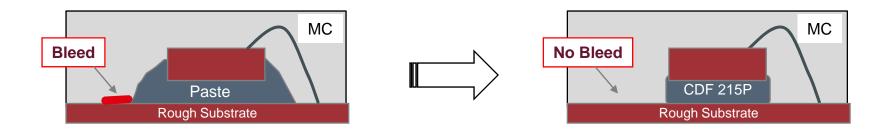

Low viscosity Thermoset monomer with lower molecular weight

High cross-linking density Low toughness

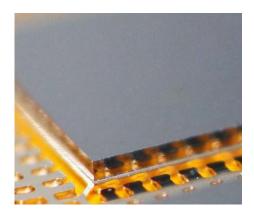
Lower adhesion Inferior MSL performance

Film material

High viscosity Thermoset monomer with higher molecular weight (solid resins)

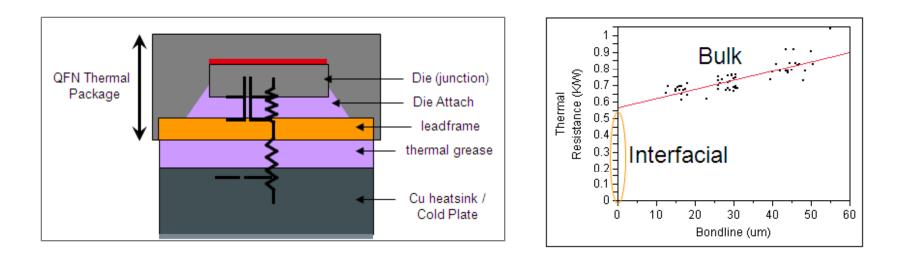

Lower crosslinking density High toughness

Better adhesion Better MSL performance



Material Benefits of cDAF

Potential for Zero Delam applications


- Conductive films do not bleed and do not have a fillet, so the adhesion of MC to LF is stronger – regardless of LF finish: smooth or rough.
- CDAF also has minimal out-gassing, which ensures clean WB bond pads & die top –
 - wirebonding or MC-die top delamination not observed

Thermal & Electrical for cDAF

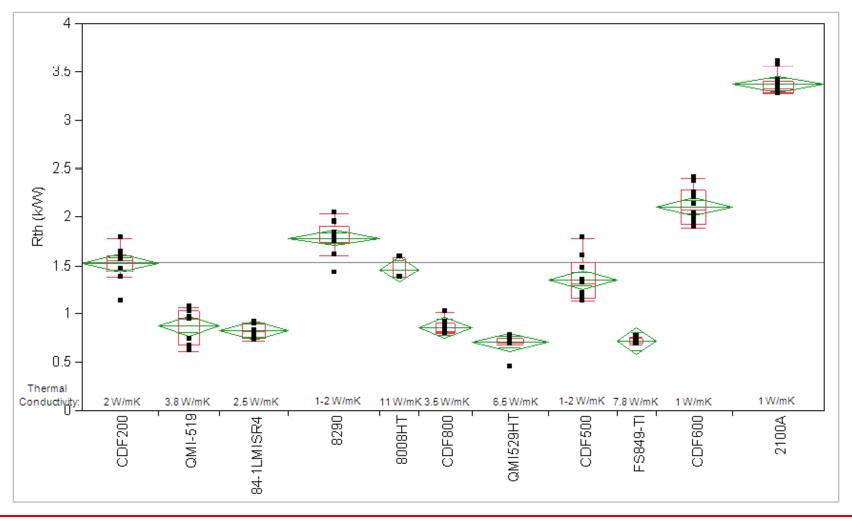
Stable In-Package performance

- Thermal Conductivity [W/mK] is an intrinsic material property
- Thermal Resistance, R_{th} [K/W], is a geometry dependent value that allows us to better compare materials in a functional package
 - 70 90% of the R_{th} is due to the interfaces and is not captured in thermal conductivity values

Conductive films are designed to have optimal performance in the z-axis direction

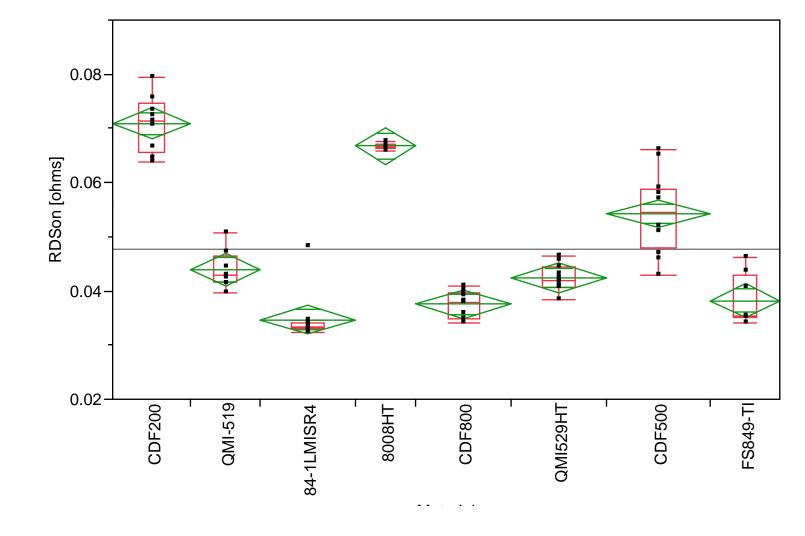
Portfolio of CDAF Products

Property table for film and paste


	unit	CDF 200P	QMI519	84-1LMI SR4	8290	8008HT	CDF 800P	QMI529HT	CDF 500P	FS849-TI	CDF 600	2100A
Material Property												
Volume Resistivity	ohm-cm	0.0014	0.0001	0.0002	0.008	0.00006	0.0003	0.00004	0.0002	0.00002	0.0008	0.05
Thermal conductivity	W/mK	2	3.8	2.5	1.6	11	3.5	6.5	1 - 2	7.8	1	1.35
CTE alpha1	ppm/C	48	40	40	81	37	40	53	60	44	75	65
CTE alpha 2	ppm/C	120	140	150	181	62	118	156	245	155	320	200
Тд	°C	15	75	120	38	264	11	3	10	211	"-5	60
Modulus @ 25C	Мра	5,400	5,300	3,930	3,034	6,659	7,100	3,300	11,300	7,800	3,000	3,200
Modulus @ 250C	Мра	1,000	287	303	117	2,450	900	-	130	1,070	40	230
Performance												
HDSS (260°C) on Ag	kg/mm^2	1.3	0.8	0.2	0.6	0.7	1.0	0.5	0.7	0.5	0.7	0.4
Room Temp DSS on PPF	kg/mm^2	2.14	4.9	3.0	5.0	-	> 2.0	-	-	-	-	-
Room Temp DSS on Ag	kg/mm^2	3.02	4.8	2.3	5.1	1.5	> 2.0	2.2	-	-	-	-
Room Temp DSS on Cu	kg/mm^2	3.17	1.8	1.2	2.5	1.5	> 2.0	-	-	-	-	-
Failure Mode		Cohesive	Cohesive	Cohesive	Cohesive	-	Cohesive	Cohesive	Cohesive	-	Cohesive	Cohesive
Thermal Resistance, Rth	K/W	1.5	1.3	0.83	1.8	1.5	0.81	0.77	1.5	0.72	2.1	2.3
RDSon	ohm	0.075	0.044	0.033	n/a	0.067	0.032	0.042	0.055	0.038	n/a	n/a
RDSon Shift (500 TC)	%	2.2	n/a	10.0	n/a	n/a	5.7	42	n/a	28.0	n/a	n/a
RDSon Shift (1000 TC)	%	6.6	n/a	15.6	n/a	n/a	6.4	42	n/a	28.8	n/a	n/a
JEDEC MSL 260°C			MSL1		MSL1			MSL1		MSL1		
(on 7x7mm PPF QFN with	MSL level	1	capable for	3	capable for	3	1	capable for	1	capable for	2 (PBGA)	2 (PBGA)
2.5x2.5x0.33 die)			small die		small die			small die		small die		. ,
JEDEC MSL 260°C												
(on 7x7mm PPF QFN with	MSL level	2	-	-	-	-	2	-	1	3	2 (PBGA)	2 (PBGA)
5x5x0.36 die)												. ,
Processing												
Cure	profile	30 min ramp to 200C + 1hr soak @ 200C	30 min. ramp + hold 60 min @ 100°C + 15 min ramp + hold 60 min @ 200°C.	30 min ramp to 175C + 1hr	30 min ramp to 175C + 15min soak @ 175C	20 seconds @ 280°C		30 min ramp to 185C + 30 min soak @ 185C		30 min ramp to 175C + 30 min soak @ 175C		30 min ramp to 175C + 15min soak @ 175C

Thermal Resistance

Comparison of paste and film materials


2.5x2.5x0.36mm² Si-back die QFN 7x7mm, PPF (pad 5.8x5.8mm) 30min RAMP + 200°C 1hr cure

RDSon In package performance

2.0x2.9x0.18mm; TiNiAg-back die TO-220, Cu pad

Conductive Die attach Film

Laser Dicing

	Blade Dicing	Laser Dicing		
Process method	Mechanical cutting	Surface absorption laser process (melting, evaporation)		
Water (cooling / cleaning)	Required	Required for cleaning only		
Chipping?	Yes	Less chipping		
Debris generation?	Yes	Yes		
T-shape and round shape dicing	Not possible	Possible in certain cases		
Ultra-thin wafer dicing possible?	Limited	Possible		
Kerf Width	15 to 25 µm	Less than 15µm		
Processing speed	5 to 10 mm/s	225 mm/s		

CDAF is compatible with both blade and laser dicing on Si or GaAs waders

Advantages of Control Flow

CDAF – Material Advantages

- Thin wafer handling with precut format
 - Excellent electrical conductivity, very low RDSon shift (<10%)
 - Thinner package and smaller footprint (higher density packaging)
 - Potentially eliminate wafer backside metallization
 - In multi-die packages allow shorter die-to-die wirebonds for faster speeds.

Consistent bondline thickness and controlled flow

- No die tilt,
- Design flexibility from tight clearance between die and die pad
- Clean dry process
 - No dispensing, printing/B-staging necessary
 - No bleed (even on rough LFs), no fillet, uniform bondline, no kerf creep

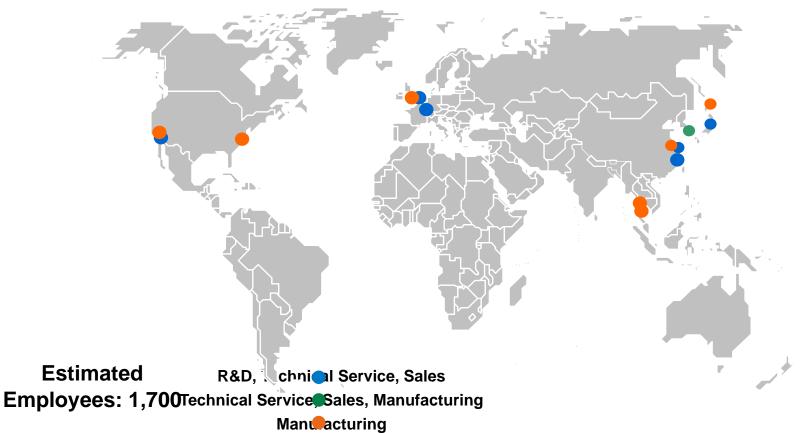
Reliability performance

- Higher reliability performance (MSL1) on mulitiple substrates (PPF, Ag Spot, Cu) and various wafer back metallization (Si, Au, Ag)
- Achieve better efficiency, reduce yield loss: Efficient and robust process

Cost Savings

• Higher density leadframes, shorter Au wires and less mold compound usage

Thank you!



Henkel Electronics Adhesives Headquarters Irvine, California

Serving our Customers Worldwide Adhesive Electronics Global End to End Business

- Henkel has a global presence with a footprint in every geography.
 - Globally aligned infrastructure to serve our customers locally.

