

Wireless Connectivity Market

Prepared for MEPTEC Discussion

Market Intelligence February 2014

Discussion Outline

- ► Two Types of Wireless Connectivity
- Wireless Connectivity Overview
 - \$4.7B IC Revenue with PC and access points (same packaging) \$6.3B in 2012
- Major Change in Wireless Combo Landscape Combos peaking in 2014
 - Processor-integration of Combo only a small IC remains ("Combo XCVR")
- ▶ Wireless Connectivity OSAT market 2012 2017
 - 2013-17 --- unit CAGR 9% -- OSAT revenue CAGR 2% ~\$0.7B
- Processor-integrated Combos Significant IC BOM reduction
- Wireless Connectivity Units and OSAT Revenue by Type and Package (2010-2018)
- Internet of Things Forecast Scenarios
 - IoT Connectivity OSAT SAM -- \$100M by 2018
 - BT versus Wi-Fi in IoT and WE

Two Types of Mobile Connectivity

▶ Mobile Connectivity is wireless "plumbing" that connects mobile devices to the cloud

```
    Cellular connectivity – a vast and growing IC market – the core of every phone

            FP BBs
            SP – SA BB and IP (BB+AP)

    (Other) Wireless connectivity - ~1B Wi-Fi ICs shipped in 2012

            Wi-Fi
            BT
            GPS
            FM
            NFC

    These functions can be discrete (SA IC) or combined (Combo IC)
    NFC
```

- Wi-Fi connectivity for access points and PCs (NB and DT) is not included in the Mobile category
 - Different products (e.g., number of antennas) and technology
- ► From a packaging point of view they are the same segment except for large pitch (pitch conversion) hence access point and PC connectivity are included in our analysis / discussion

Overview of Mobile Device Categories – Unit Projections

Mobile Devices -- 2.9B units in 2013 (6% 13-17 CAGR)

~0.5B of total are other than SP and T

201020112012201320142015201620172018

	2013	2014	2015	2016	2017	2018
Other mobile (including IoT)	50	70	90	110	130	200
PMP + Games	200	200	200	200	200	200
Navigation - HH and car in-dash	100	100	100	100	100	100
USB dongles, datacards, mobile hotspots	182	198	214	230	210	170
Feature Phones	1046	814	659	544	394	350
Hi-end SP (> \$350)	440	480	500	525	550	550
Mid-end SP	280	385	465	516	590	650
Lo-end SP (< \$150)	320	470	585	690	800	916
Hi-endTs (> \$250)	90	104	120	137	158	182
Mid-end Ts	64	72	115	159	173	183
Lo-end Ts (< \$100 - "WB")	120	199	250	320	410	510
Total	2892	3092	3298	3531	3715	4011

Source: Gartner, Linley, MI

The "Other" category may grow faster than projected below

- "Node" connectivity will likely beSiP-packaged (MCU, MEMS, RF ← BT mostly)
- Internet traffic will likely be very low
 - A joke although it is close "All smart meters in the US generate less Internet traffic than five teenagers"

Mobile Device Categories -- with PCs and Access Points Added

Rapid Tablet Adoption to Continue – 13-17 CAGR 28%

- Tablet adoption is expanding beyond Consumer into enterprise and education segments
 - In emerging markets T is often the user's first computing device continues to affect PC purchases
- ▶ The forecast (shown below) is more aggressive than many other forecasts
 - Main reason for conservative forecasts is due to their persistent underestimates of white-box T market
 - White-box Ts are approaching First Tier quality at a reasonable price

Source: IDC, Gartner, Barclays & MI Estimates, Jan 2014

Phablets are emerging as an alternative to SP and T

- Cannibalization has so far been limited (mostly in Mid-end Ts)
- -- SPs and Ts are becoming screens for Internet / Cloud access

Differences between PCs and Ts are driven by their main intended use (generation versus consumption)

Differences continue to blur – Google's Chromebook is a netbook,
 2-in-1 PCs, two processor "PC," other

Definition used:

- -- PCs -- keyboard in NB PCs is not detachable
- -- Ts keyboard, including dock, can be added (at present text input mostly)

STATSChipPAC

Two Landscape Changes in Wireless Combos

- Connectivity Combo units anticipated to peak in 2014 2014-18 CAGR = <1%>
 - This is a truly major industry change due to integration of Combos into IP-processors trend
 - In 2011 / 2012 most analyses still projected Combo unit 2012-16 CAGR at 18%
 - The change will impact Combo vendors
- 2. Connectivity Combo migrated from 65nm to the 40nm node
 - WLP continues to dominate
 - Because of die size reduction the FC package has largely replaced FBGA for <u>pitch conversion</u>
 - Pitch conversion for low-cost PCB boards (largely for Emerging Markets) accounts for about 20% of Combo units

Source: Composite

Linley Group – "Best Mobile Processor" in 2013

- ▶ In January 2014 the prestigious Linley Group awarded "Best MP in 2013" to MediaTek
 - Choosing MediaTek's MT6572 2-core 28nm IP targeting \$80 and below SPs
 - HV production in May 2013 "this chip stands well above its competitors bringing innovation and value to the rapidly growing market for low-cost smartphones"
 - "This processor was the first low-end chip to integrate a full set of smartphone connectivity functions: Wi-Fi, Bluetooth, GPS, and FM radio"
 - ▶ This level of integration reduces several dollars off the total system cost—a huge savings in an \$80 SP
 - Qualcomm and Spreadtrum released low-cost processors with a similar level of integration

Connectivity Combos – Units are Peaking in 2014

Combos:

- -- 2014-2018 unit CAGR <1%>
- -- OSAT revenue <4%>

Connectivity Combos dominance is ending

- -- Processor integration benefits are
 - ▶ Nodal scalability
 - ▶ Power and silicon (cost) reduction
 - Reduction of components
 - ► For IC vendors platform control
- -- Combo composition is changing also
 - from WF+BT+FM functional combination
 - ▶ to WF+BT+FM+ NFC and/or WF+BT+FM+GPS
- -- Use of discrete WLAN is very low in SPs and Ts
 - ► The primary use of discrete WLAN is in PCs and access points

Connectivity -- Units and OSAT Rev by Package and Type

Wireless Connectivity **Units** by Package (M)

	13-17
	CAGR
QFN / QFP / QFN-DR	13%
FBGA	- 2 %
WLP	11%
FC (future eWLB likely)	7 %
Total Units	9%

CAGR
2%
92%
0%
3%
5%
9%

13-17

Wireless Connectivity **Units** by Type (M)

Wireless Connectivity OSAT Rev by Package (\$M)

	13-17 CAGR
QFN / QFP / QFN-DR	8%
FBGA	-5%
WLP	5%
FC (possibly eWLB)	1%
Total OSAT Rev	2%

	13-17 CAGK
Combo Wi-Fi	-4%
MP-integr Wi-Fi	81%
Discrete Wi-Fi	-3%
Discrete BT	-2%
Discr/Combo GPS	-1%
Total OSAT Rev	2%

Wireless Connectivity OSAT Rev by Type (\$M)

Wireless Connectivity OSAT Packaging ~~\$700M Market

Wireless Connectivity OSAT market remains an important segment of the Mobile IC market

Revenue SAM = ~OSAT
Wireless Connectivity
IoT Wireless Connect.

20)13	2014	2015	2016	2017	2018	13-17 CAGR
7	13	696	694	741	780	835	2%
1	L7	25	42	60	80	106	44%

WB and WLP will continue to dominate Wireless Connectivity packaging

Wireless Connectivity OSAT Rev by Package (\$M)

	13-17 CAGR
QFN / QFP / QFN-DR	8%
FBGA	-5%
WLP	5%
FC (possibly eWLB)	1%
Total OSAT Rev	2%

- The above is also true for the embryonic IoT market -- dominated by QFN and modules (die in WLP)
- There is an increasing interest in module packaging
 - Modules may become a preferred packaging choice in the IoT and WE markets
 - Leading OSATs have module/SiP packaging capabilities

Connectivity Processor-integration – Limited OSAT Impact

- System economics of processor integration is particularly favorable in the Mainstream segment where Combo is integrated into an IP-processor
 - Platform vendors (Qualcomm, MediaTek, Spreadtrum) versus stand-alone Combo vendors
 - SA Combo growth has ceased the market will remain significant in size because of continuous new standard introduction
- Processor-integration of WLAN Combos represents a major change in wireless connectivity
 - Processor-integration significantly reduces <u>system cost</u> and power
 - ▶ More than \$4 or 10-15% reduction of IC BOM in Mainstream SPs
 - OSAT implications are much more limited
 - ▶ About \$0.17 (when in FC) versus ~\$0.08 (remaining Combo-residual RF IC)
- ▶ A new connectivity segment has emerged "Combo XCVR" (a la cell BB XCVR)
 - WLP at QTI, QFN at MTK
- Leading platform and AP vendors are likely to adopt a processor-integration approach
- IoT is a high-growth emerging segment
 - Primary connectivity IC suppliers will be the same as in wireless connectivity
 - All three main IoT components (connectivity (BT), processor and sensor) will be WB, WLP or module packaged

Internet of Things (IoT = IoE = M2M)

Internet of Things (IoT)

- ▶ The IoT refers to devices that can monitor their environment, report their status, receive instructions, and even take action based on the information they receive
 - Unlike SPs or Ts, IoT devices have a limited user interface and exist solely to collect and send data to other devices
 - The three basic functionalities in IoT devices are sensor, wireless connectivity and processor

IoT is projected to eventually become the largest growth opportunity in the history of business

- -- Smart systems (fusion of computing, communication and sensing)
- -- Connecting and interacting with people, things (M2M), information, places → IoE

Sources of this optimistic IoT projection are composite - BII, Gartner, IDC, SA

- Qualcomm Swarm Lab at US Berkeley projects 1000 radios per person on Earth by 2025
 - Trillions of connected devices
- Bosch projects 7 trillion devices in sensory "swarms" 1000 sensors per person
 - At present advanced cars have up to 100 sensors, medical diagnostics uses 10s of different sensors

Descending Trillion Sensor by 2020 IoT Hype Mountain

- ▶ IoT will more likely become 1.2B+ unit market by 2018 most IoT growth after 2020
 - In a Base Case model installed base of IoT in 2018 is ~3.5B devices
 - 1.2B+ additional IoT connectivity devices is addition to ~4.5B wireless connectivity units by 2018
 - Primarily in fragmented vertical commercial and consumer applications
 - ▶ In 2013 there will be 4.5B 32-bit MCUs and 1.3B AP (SP+T) shipped (25% and 20% 12-18 CAGR)

IoT Unit Growth Scenarios (M)

	2011	2012	2013	2014	2015	2016	2017	2018	14-18 CAGR	
Hi Case	300	360	490	666	906	1233	1677	2668	41%	Composite: Gartner, IDC, BII, SA
Base Case	70	100	140	220	400	600	850	1200	53%	М
Lo Case	70	100	140	220	400	600	800	1000	46%	Linley Group

- ▶ Wireless connectivity in IoT is dominated by WB (large PCB pitch) and modules (allow 0.4mm WLP)
 - Qualcomm IoE platforms introduced in <u>Sept. 2013</u>
 - ► QCA4002 -- 7x7mm 58pin QFN; QCA4004 (with MCU) 8x8mm 68pin QFN 802.11n Wi-Fi
 - BCM4390 WICED (Wireless Connectivity for Embedded Device) introduced May 2013
 - ▶ BCM4390 SoC (die is in WLP) is packaged in a module
 - It contains 802.11b,g,n Wi-Fi -- with plans for BT, GPS, NFC and other options
 - Like many other vendors, BRCM offers WICED™ a development system for OEMs to facilitate adding wireless connectivity to embedded devices (MCUs with more and more A/M-S components)
 - TI SimpleLink Wi-Fi CC3000 is a "self-contained 802.11 network processor" that minimizes the effort involved in making devices internet-aware ← QFN packaged

IoT Connectivity OSAT SAM -- \$100M+ by 2018 (for 1.2B devices)

	2012	2013	2014	2015	2016	2017	2018	14-18 CAGR
Total IoT (M)	100	140	220	400	600	850	1200	53%
OSAT A (\$)		0.09	0.085	0.08	0.075	0.07	0.066	-6%
OSAT T (\$)		0.03	0.028	0.027	0.025	0.023	0.022	-6%
OSAT ASP (\$)		0.12	0.113	0.106	0.1	0.094	0.088	-6%
IoT Conn. SAM (M\$)		17	25	42	60	80	106	44%

- ▶ IoT wireless connectivity OSAT is a high-growth new segment WB and, if in module, WLP
 - An additional \$100M+ is in 32-bit MCU packaging nearly all in WB
 - There is an additional \$100-\$200M MEMS packaging mostly WB and SAM is function of sensor type and number of sensor
- ▶ In general demand for modules is increasing

		2012	2013	2014	2015	2016	2017	2018	14-18 CAGR
	Wearable El.	0.3	5	54	119	166	217	221	42%
	Commercial	100	120	150	220	300	350	400	28%
IoT	Consumer		20	60	120	200	300	350	55%
	"Things"			10	60	100	250	450	159%
	Total IoT	100	140	220	400	600	850	1200	53%

Wearable electronics (WE) is an adjacent segment to IoT

STATSChipPAC

- Typically WE is a "companion" device tethered to SP by BT
 - Bracelets (a sub-segment of WE) might not have any connectivity (a rudimentary display instead)

BT in Wearable Electronics – Wi-Fi Dominance in IoT Likely

- ▶ IoT devices are typically networked in a hierarchy of networks and processing nodes
 - Sensor nodes ("motes") are connected to processor nodes (data fusion, encryption) via Zigbee or Wi-Fi
 which are then connected to central control nodes / cloud by 3G/4G cellular, Wi-Fi or Ethernet
- ▶ Most MCU, Analog and Wireless Connectivity IC vendors are pursuing the IoT market
 - But also Murata (acquired Sychip Wi-Fi S/W vendor)
 - A very large number of start-ups are pursuing IoT solutions:
 - Dust Networks (acquired by Linear)
 - Ember (outdoor municipal lights) acquired by Silicon Labs
 - ▶ E&H Process Solutions (Switzerland) using Dust technology
 - ▶ Electric Imp (ex-Apple and Google team) a Wi-Fi card in wall power socket
- ▶ The canonical commercial (M2M) application is smart meters
 - Electronic link allowing utility monitoring usage and increasing efficiency
 - ▶ In the US there are ~150M residential and commercial electricity meters
 - ➤ ~25% (~35M) have converted to smart meters --- worldwide there are more than 2B electric meters
- Smart parking systems monitor and guide drivers to parking spaces
 - Capacity utilization increases to ~100% (from typically 80%)
 - ▶ In the US there are more than 100M for-pay parking spots
- ▶ More than 1B vehicles and ~17M shipping containers are used WW
 - A small GPS receiver and wireless connection can track the location of valuable mobile assets
- Control of street lights China now builds entire new cities with mandated LED lighting control

IoT – Fragmented Market – Many Types of Things (Gartner)

By 2017, 50% of Internet of Things solutions will originate in startups less than three years old.

- · Expect 10 billion shipments in 2020
- · Many smart versions of existing product markets
- Few are very high volume; most are small and fragmented
- · Key challenge: where to focus?

* Preliminary, September 2013

Gartner

How Gartner Arrives to \$262B IoT Market in 2020

* Preliminary, September 2013

