

Stacked Silicon Interconnect Technology (SSIT)

Suresh Ramalingam Xilinx Inc.

MEPTEC, January 12, 2011

Background and Motivation

Stacked Silicon Interconnect Technology

Summary

© Copyright 2010 Xilinx

Background and Motivation

Background: FPGA

Programmable SoC of logic, memory, and analog circuits

Customers Are Asking for More

- <u>More</u> than 2X today's logic capacity...
- Many <u>more</u> high-speed serial transceivers...
- Many <u>more</u> processing elements...
- Much <u>more</u> internal memory to store data...

Insufficient IO Scaling

- Growing gap between number of logic gates and I/O
- Technology scaling favors logic density

Gates and Number of IOs

15x drop in I/O-to-logic ratio by 2020

Number of I/O per 1000 logic cell in the largest FPGA in each

~60x decrease in I/O-logic ratio

Package Technology is Limiting

The packaging chasm:

- Two orders difference in package trace/width vs silicon metallization: connection BW is limited
- I/O also isn't scaling due to bump pitch and chip to chip loading issues
- Leads to increased area, power and complexity

Board chasm is even worse...

Major "gearing" problem

Challenge 1: Availability and Capability Largest FPGAs only viable later in the life cycle

Challenge 2: Power and Bandwidth

Traditional mitigation techniques are no longer adequate

Large Monolithic FPGA

Multiple FPGAs on PCB or MCM

Chip-to-Chip via Standard I/Os and SerDes

More total gates, sooner, but...

Resources Not Scaling

- 1. Not enough I/Os
- 2. I/O latencies too high
- 3. Wasted I/O power

Introducing Stacked Silicon Interconnect Technology High Bandwidth, Low Latency, Low Power

Xilinx Innovation

Massive number of low latency, die-to-die connections

- Earlier in time
- No wasted I/O power
- Over five years of R&D

Delivers the Best of Both Worlds: High and Usable Capacity

I/O performance

Enables High Bandwidth, Low Power FPGA to FPGA Connectivity

© Copyright 2010 Xilinx

Delivers Resource-Rich FPGAs

Largest Device with Transceivers

For the Most Demanding FPGA Applications

Next Gen Wired Communications

Next Gen Wireless Communications

High Performance Computing

Industry's Highest System Performance and Capacity

Aerospace & Defense

Summary

SSIT Addresses IO Bottleneck

100X lower BW/W over traditional IOs/SerDes

Can offer Next Generation Density Now

SSIT Platform Enables

- Optimal Partitioning
 - Digital and analog blocks
 - IP/IC reuse
- Heterogeneous Integration
 - Digital, mixed signal, & optical
 - FPGA & memory

Stacked Silicon Interconnect Technology

Technology Overview

Design & Implementation Flow

Path to Production

Xilinx FPGA Architectural Innovations At the Heart of the Technology

Side-by-Side

Interposer

Harnesses Proven Technology in a Unique Way

Benefits from Collaboration with Other Technology Leaders

- Leading fabless & fablite companies
- Equipment manufacturers
- Fabs and OSAT
- Industry consortia

- Requirements alignment
- Industry standards setting
- Best practice sharing

Design & Implementation Flow

Design Methodology Scales to Largest Devices

- One project
- Transparent routing
- Standard timing closure flow
- Single FPGA bring-up & debug

Multiple FPGAs

- Multiple projects
- I/O multiplexing & other "tricks"
- Timing closure across multiple designs
- Bring-up & debug of multiple FPGAs

Optimized ISE Design Suite Flows for Wide Variety of Users

Push-button flow

- Ease-of-Use
- High performance

2. Block-based flow

- Floor planning
- Hierarchical design
 - Team design
 - Incremental builds
- Additional performance tuning

Path to Production

Technology Development Strategy

• Shorter Learning Cycle

Risk Mitigation

Xilinx Is Well on the Way to Volume Production

Module Development **Process Integration Reliability Assessment** Supply Chain Validation

Design Enablement

Reliability Assessment and Modeling

Reliability & Yield Assessment	 Temp Cycle B, Level-4 Preconditioning, and Electromigration Electrical tests of micro-bump and TSV
Stress Simulation	Interposer functions as a stress bufferImproved C4 bump reliability
Thermal Simulation	 40 watt design simulated < 2.5°C junction temperature difference

Test Vehicle (Top View)

Summary

Xilinx leads industry with <u>Stacked Silicon Interconnect</u> technology delivering breakthrough capacity, bandwidth and power efficiency

Stacked Silicon Interconnect Technology

- 2X FPGA capacity advantage at each process node
- Core part of Virtex-7 family
- Supported by standard design flows

