

Progress Towards An Implantable Artificial Kidney

MEPTEC 9th Annual MEMS Symposium

Shuvo Roy, PhD Associate Professor Department of Bioengineering and Therapeutic Sciences UCSF Schools of Pharmacy and Medicine

May 19, 2011

Background on Kidney Disease

Key functions of kidneys

- removal of wastes
- regulate electrolytes
- maintain acid-base balance
- regulate blood pressure
- secrete hormones

Chronic kidney disease (CKD)

- slow, progressive loss of function
- affects over 25 million Americans
- graded in stages: Stage I, II, III, IV, V
- Stage V is end stage renal disease (ESRD)
 - kidney failure

USRDS 2009 ESRD Statistics

Biomimetic Device

- Dialysate-free
 - convective filtration
 - selective reabsorption

• 2 primary components

- hemofilter
 - toxin clearance
- cell bioreactor
 - volume homeostasis
 - metabolic function
 - electrolyte balance

Implantable Bioartificial Kidney

Device Benefits

Continuous treatment

- 24/7 operation eliminates build-up of toxins as happens now between sessions in standard dialysis
- Freedom of mobility
 - implanted device eliminates tethering to dialysis equipment

Decreased infection risk

 permanent vascular connection eliminates key entry path for pathogens

More physiological therapy

 bioreactor cells impart biological function that dialysis simply cannot

• No need for anti-rejection drugs

- bioreactor cells are protected from patient's immune system

Renal Assist Device (RAD)

Extracorporeal circuit

v of California

San Francisco

- recapitulates nephron function
- hollow fiber construct
 - commercial dialyzers
- tissue engineered kidney
 - filtration + cell therapy
- toxin removal
- metabolic function
- acute renal failure patients

Clinical Testing Results

- Phase II, multicenter, randomized trial with 58 patients in the ICU
 - 50% reduction in mortality for patients treated with the RAD versus conventional therapy

Tumlin J et al. Efficacy and Safety of Renal Tubule Cell Therapy for Acute Renal Failure. JASN 2008 19: 923

RAD Implementation

Fundamental Barrier to Miniaturization

Polymer membrane technology

- low hydraulic permeability
- polydisperse pore size distribution
- biodegradation

Size Distribution Effects

Silicon Nanopore Membranes (SNM)

- Monodisperse pore size distribution
- Chemical and mechanical stability

SEM – Silicon Membranes

Development Strategy

- Miniaturize RAD into implantable device by leveraging nanotechnology for hemofilter fabrication and scaffold design
 - silicon nanopore membranes allow precise control of pore architecture
 - human kidney cells reabsorb salt and water while blocking back leak of uremic toxins
 - cells provide metabolic, endocrine, and immunologic functions

Membrane Fabrication

- Novel process for reproducible fabrication of silicon membranes
 - pore sizes: 5-15 nm
 - pore size variation: 1%

(a) Pattern poly & grow thin oxide

(b) Deposit 2nd poly layer & planarize

(c) Etch windows & open pores

Completed Wafer

2nd Generation Membranes

- High hydraulic permeability
 - up to 600 ml/hr/mmHg/m²
 - no pump needed
- Manufacturing compatibility
 - scalable for larger quantities

- Selectivity for 7 nm pores
 - albumin: <0.1%</p>
 - beta2-microglobulin: >80%

Anti-Biofouling Coatings

Evaluation of 3 coatings for protein resistance

- polyethylene glycol (PEG) is widely used
- poly(N-vinyldextran aldonamide-co-N-vinylhexanamide) (PVAm)
 - synthetic glycocalyx
- polysulfobetaine methacrylate (polySBMA)
 - zwitterionic polymer

Implantable Artificial Kidney

University of California San Francisco

In Vivo Biocompatibility – 30 Days (Rat)

In Vivo Filtration

Hemofilter Cartridge Design

Flow Optimization

Mini-Pig Implantation

Membrane after Blood Exposure

Cell Sourcing and Storage

- Isolation and expansion of cells from renal cortex
 - "Enhanced Protocol" (EP)
 - 1 gm of biopsy tissue (10⁸⁻¹⁰ cells)
 - 17 doublings
 - 10¹³⁻¹⁵ differentiated cells: 1-100 acres surface area!
- Successful cryopreservation of bioreactor
 - differentiated cells in situ
 - >1 month
 - >4 months in storage

Cell Bioreactor

Bioreactor features

- microchannels for controlled shear stress on cells
- membrane for cell support and transport pathway
- basolateral chamber for membrane support and fluid collection

Cell Growth on Silicon Membranes

Human renal tubule cells (HRTCs)

- isolated from transplant discards
- demonstrate differentiated phenotype

Active Fluid Transport via Cells

- Increased transport under shear conditions
 - translates to 70 liters/day/m²

Key Accomplishments – Phase I

Silicon membranes

- high permeability
- high selectivity

Biocompatible coatings

- protein anti-fouling
- anti-thrombogenic
- Cell sourcing
 - harvest transplant discards
 - biopsy for autologous use
 - cryopreservation for storage
- Cell performance
 - significant immunoisolation
 - significant water reabsorption

Acknowledgements

- Collaborators
 - NIH/NIBIB Quantum Project team
- Funding
 - NIH
 - R01 EB008049
 - R21 EB002285
 - K08 EB003468
 - DoD
 - W81XWH-05-2-0010
 - NASA
 - JGBEC
 - Ohio Third Frontier Action Fund
 - Rogers Bridging-the-Gap Award