GEL DISPENSE FOR ENCAPSULATION OF MEMS PRESSURE SENSORS

Gel Encapsulation Poses Unique Challenges in Packaging

page 24

Everything-Proof: The Future of Mobile and Wearable Devices

page 28

MEPTEC MEMBER COMPANY PROFILE

Established in 1997, UTAC’s customers span across all vertical markets including: mobile phone and communication, consumer, computing, automotive, security banking, and security identity, industrial and medical applications.

page 12

The success of Fan-Out packaging platforms is so undeniable today.

Epoxy paste adhesives have historically been the sole epoxy material available for die attach.

In an industry that is accustomed to many package options, consolidation could produce “The Big Five” advanced packaging platforms.

IC Designers, EDA and IP Vendors, Foundries and Assembly Houses Can Work Together.
Innovative IC, System-in-Package, and MEMS packaging portfolio for today’s miniaturization, mobility, and IoT needs.

Wear it. Sense it. Move it.

Wire Bond Flip Chip WLP 2.5D & 3D Fanout SiP

Package it. Visit: aseglobal.com
ON THE COVER

As the MEMS-based sensing industry grows, the environmental conditions in which these sensors must perform grow with it. Pressure sensing is one application where particularly harsh environments can be present. Unlike previous technology, the MEMS-based technology offers the ability to place the microscopic sense element and wire bond interconnects directly in the fluid path. It is often necessary to protect the sense element and interconnects with products such as encapsulation gels.

Cover Photo Courtesy of SMART Microsystems Ltd.

ANALYSIS – 2016 was a turning point for the Fan-Out packaging market since both leaders, Apple and TSMC, changed the game and may create a trend of acceptance of Fan-Out packages. Yole is analyzing the current market and technologies trends and offers you to discover these results within a new report.

JEAN-CHRISTOPHE ELOY
YOLE DÉVELOPPEMENT

PROFILE – UTAC is a leading independent provider of semiconductor assembly and test services for a broad range of integrated circuits including analog, mixed-signal, logic, memory and radio frequency. UTAC is the 6th largest OSAT in the world and among full-service assembly and test providers, UTAC’s test percent of revenue is the highest in the industry.

UTAC
MEMBER COMPANY PROFILE

APPLICATIONS – Plasma dicing is a chemical-etching process that does not chip or crack the silicon. The gentle dicing process can be controlled to deliver extremely smooth sidewalls and has been proven to yield the highest die strength from all dicing methods.

ANNETTE TENG
PROMEX INDUSTRIES

TECHNOLOGY – Over the past few years, there has been a significant shift from PCs and notebooks to smartphones and tablets as drivers of advanced packaging innovation. In an industry segment that has grown accustomed to a multitude of package options, consolidation could produce “The Big Five” advanced packaging platforms.

RON HUENOELLER, ADRIAN ArCedera AND RAMA AlAPATI
AMKOR TECHNOLOGY

DEPARTMENTS
4 Member News
8 Coupling & Crosstalk
10 Industry Insights
24 SMART Microsystems News
28 Henkel News
30 Opinion
Namics Technologies Announces Plans for New Manufacturing Facility

Namics Technologies has developed a plan to construct a new upgraded manufacturing facility on the same property as their current head office factory in Niigata City, Japan. Construction began in March 2016 with completion targeted for April 2017.

The current manufacturing building has been in use for many years and needs to be replaced with an upgraded building that incorporates the latest construction standards for withstanding natural disasters. The new building will enhance their stability of supply and create an improved manufacturing environment. When the construction of the new building is complete and manufacturing equipment installed, Namics will begin sampling products for qualification of the new facility. Once all products from the new facility have been qualified by their customers, they will decommission the current facility and remove the building.

Master Bond’s Thermally Conductive, High Temperature Resistant Epoxy Passes NASA Low Outgassing Tests

CERTIFIED TO MEET ASTM E595 NASA low outgassing standards, Master Bond EP46HT-2AO Black is well suited for the aerospace, electronic, opto-electronic industries and can be used vacuum environments. This two component system blends thermal stability with a high strength profile for a variety of bonding, sealing and encapsulation applications.

EP46HT-2AO Black combines superior thermal conductivity of 9-10 BTU/in/ft/hr°F [1.2981-1.4423 W/(m·K)] and reliable electrical insulation with a volume resistivity exceeding 1014 ohm-cm at room temperature. It has a glass transition temperature of 200-210°C and is serviceable over the wide temperature range of -100°F to +500°F [-73°C to +260°C]. This dimensionally stable system delivers a tensile strength of 6,000-7,000 psi, compressive strength of 26,000-28,000 psi and tensile lap shear strength of 1,400-1,600 psi at 75°F. EP46HT-2AO Black also withstands a variety of chemicals including oils, water, acids, bases and fuels.

Unlike most traditional two part epoxies, EP46HT-2AO Black cures with the addition of heat, which allows it to have a working life of over 24 hours. It has a forgiving 100 to 30-35 mix ratio by weight and upon mixing, this thixotropic system has a viscosity of 140,000-280,000 cps. It bonds well to metals, composites, glass, ceramics, rubbers and many plastics.

Master Bond EP46HT-2AO Black is thermally conductive and electrically insulative adhesive, sealant and potting compound that meets NASA low outgassing requirements. Read more about Master Bond’s heat resistant adhesives at www.masterbond.com or contact Tech Support at technical@masterbond.com.
Industry Veteran Nick Leonardi Joins SMART Microsystems Team to Expand Next Generation MEMS Sensors Packaging and Assembly

NICHOLAS LEONARDI has been retained by SMART Microsystems in the role of Business Development, bringing over 25 years of industry experience with positions ranging from product development and manufacturing to sales and marketing, in start-ups to the Fortune 100. Mr. Leonardi gained valuable technical sales, marketing and applications management experience with companies such as General Electric and National Semiconductor. The transition to business development followed years in manufacturing and development engineering with companies such as LSI Logic and Advanced Micro Devices. Current industry activities include his participation on the MEPTEC Advisory Board, Arizona State University Bio-Medical Engineering School Advisory Board and memberships with other Electronics Industry Organizations. Mr. Leonardi received a B.S. Degree in Materials Engineering from Alfred University, in New York State.

SMART Microsystems has gained momentum and is well positioned in MEMS Packaging and Assembly, supporting demand for next generation sensor related technologies, with focus on Medical, Auto and the Mil/Aero industries.

For more about SMART Microsystems capabilities and services contact Nick Leonardi, Director of Business Development, at nleonardi@smartmicrosystems.com, call 440-366-4203, or visit the company website at smartmicrosystems.com. ◆

KYOCERA Optical Blood-Flow Sensor is Among World’s Smallest for Wearable Devices, Smartphones

KYOCERA CORPORATION HAS announced that it has developed one of the smallest known optical blood-flow sensors, which measures the volume of blood flow in subcutaneous tissue. With the sensor, Kyocera is researching a variety of mobile health (mHealth) applications such as monitoring stress levels or preventing dehydration, heatstroke and altitude sickness by studying trends or changes in blood-flow volume as alerts for these conditions and developing algorithms for detection.

Leveraging Kyocera’s expertise in miniaturization, the sensor – only 1mm high, 1.6mm long and 3.2mm wide – is designed for use in small devices such as mobile phones and wearable devices. The company will offer sensor module samples starting April 2017, and aims to commercialize the technology as a device by March 2018. Visit www.kyocera.com for more information. ◆
EXAR APPOINTS DIVISION VP OF CORPORATE QUALITY AND RELIABILITY

Exar Corporation has named David Matteucci Division Vice President of Corporate Quality and Reliability. Mr. Matteucci will be central to managing Exar's Quality and Reliability function as well as supporting tier 1 engagements.

Mr. Matteucci has over 30 years of experience in the semiconductor industry, having held executive positions at Power Integrations, Zorran Corporation, Galileo Technology, National Semiconductor, as well as previously at Exar Corporation, where he served as Vice President of Operations Engineering and Quality and Reliability.

www.exar.com

TESSERA HOLDING CORP. COMPLETES ACQUISITION OF DTS

Tessera Holding Corporation announced that it has completed the acquisition of DTS, Inc. The company’s combined portfolio of products and technologies uniquely positions it to deliver smart sight and sound solutions and next-generation 3D semiconductor interconnect solutions for mobile devices, consumer electronics, and automotive markets - while also addressing the growing potential of emerging technologies such as IoT and AR/VR. The company’s team of world-class engineers will focus on the vision of creating core technologies that power intelligent, immersive and personalized digital experiences.

tesseraholdingcorporation.com

Mendoza Elected Chairman of JEDEC Microelectronics Committee

BEN MENDOZA, VICE President and General Manager of Golden Alps Corporation, and newly elected Chairman of the JEDEC JC-13.2 Microelectronic Devices Committee, begins his term at this month’s JEDEC meeting in San Antonio, Texas.

Joining JEDEC in the 1990s, Mr. Mendoza began representing the semiconductor industry and now leads the microelectronic devices section of this Government Liaison Committee. In addition to being a member of JEDEC, Mr. Mendoza participates in other industry task groups. These include Copper Wire (Bonding), Plastic Encapsulated Microcircuits Flow for Space Applications, and the Mission Assurance Improvement Working Group.

Intel Unveils Compute Card, a Credit Card-Sized Compute Platform

INTEL HAS ANNOUNCED a new modular compute platform called the Intel® Compute Card along with a range of partners who will be working with Intel to help accelerate the ecosystem of solutions based on the Intel Compute Card. Intel has been a leader in delivering technology to help realize the benefits of the Internet of Things and enable more smart and connected devices. The Intel Compute Card is being developed with that in mind, to transform the way compute and connectivity can be integrated and used in future devices.

The Intel Compute Card has all the elements of a full computer, including Intel SoC, memory, storage and wireless connectivity with flexible I/O options so hardware manufacturers can optimize for their particular solutions – from interactive refrigerators and smart kiosks to security cameras and IoT gateways. Device makers simply design a standard Intel Compute Card slot into their device and then utilize the best Intel Compute Card for their performance and price needs. This reduces the time and resources needed to design and validate the compute block and helps speed up innovation to bring the power of intelligence into an ever wider range of devices.

Intel is working with a wide range of partners who share their vision that the Intel Compute Card could significantly change the way they and the rest of the industry design and productize a wide range of solutions in the near future.

The Intel Compute Card will be available in mid-2017 and will come with a range of processors options, including the latest 7th Gen Intel® Core™ processors. For more information and to stay up to date on the Intel Compute Card, visit www.intel.com/ComputeCard.

Promex accelerates time to market from concept to prototype to production

Mixed Assembly with SMT & Chip-wire
- Medical devices (implantable, wearable, medtech equipment)
- Redundant continuous flow SMT assembly lines >/= 01005 component placement
- RoHS compliant and leaded solder systems
- IPC-A-610 Class 3 assembly

IC Packaging
- Hermetic, plastic, air-cavity, COB
- Multiple interconnect types
- Custom engineered flows (commercial, medical, military)
- Fast-track prototypes to production volumes
- Class 100 and Class 1000 clean rooms

Promex

www.promex-ind.com l 408-496-0222
MST Expands Its Sales Organization for US East Coast

THE MICRO SYSTEMS TECHNOLOGIES (MST) Group, a global provider of innovative components and manufacturing services for high-reliability / high-performance industries, such as medical technology and aerospace & defense has experienced strong market growth in recent years. The group’s customer focused strategy and growing demand have resulted in a decision to expand their US organization. MST is pleased to welcome Robert F. Baker to the company.

Effective October 10, 2016, Robert F. Baker was appointed Eastern Regional Account Manager for Micro Systems Technologies, Inc. Prior to joining MST, Robert was Business Development Manager for Janco Electronics, Inc. Bringing a wealth of relevant industry technical experience to the company, Robert will focus his sales and technical support activities in the Eastern United States.

Visit www.mst.com for more information about Micro Systems Technologies products and services.

SMART Microsystems Purchases Mitutoyo Programmable Measurement System for MEMS Sensors Packaging

SMART MICROSYSTEMS HAS announced the recent purchase of a new Mitutoyo Quick Vision ELF Coordinate Measurement Machine (CMM). As an ISO9001 certified supplier to their valued customers, SMART has an obligation to insure, monitor, and maintain the quality of all incoming materials. This highly accurate programmable non-contact and contact measurement system will allow SMART to measure and certify incoming material in a fraction of the time it would take by conventional means. Lot basis geometric measurements can be performed in minutes. With machine accuracy greater than 2+3L/1000, they will also be using this system to perform contract precision measurement services to customers at a highly competitive rate with very rapid turnaround times.

SMART Microsystems creates turn-key solutions for microelectronic package assembly challenges to move your MEMS sensor technology from development to production. With an engineering team experienced in manufacturing and state-of-the-art facilities, SMART Microsystems accelerates the transition of your new MEMS sensor product to the market.

For more about SMART Microsystems capabilities and services contact Nick Leonardi, Director of Business Development, at nleonardi@smartmicrosystems.com, call 440-366-4203, or visit the company website at smartmicrosystems.com.

Bonding Wire

Easy to Order
Yes
One Spool

(800) 776-9888

Available from TopLine
TanakaWire.com

CCGA
Column Grid Array
1-800-776-9888

TopLine®

Solder columns absorb CTE mismatch between large ceramic arrays and the PCB, making CCGA more reliable than BGA.

Two Part
Addition Cured Silicone
MasterSil 972TC-LO

Hackensack, NJ 07601 USA
+1.201.363.8983 • main@masterbond.com
www.masterbond.com
Electronic coupling is the transfer of energy from one circuit or medium to another. Sometimes it is intentional and sometimes not (crosstalk). I hope that this column, by mixing technology and general observations, is thought-provoking and “couples” with your thinking. Most of the time I will stick to technology but occasional crosstalk diversions may deliver a message closer to home.

Quality, Meet Safety & Security!

WHAT CAN BE SIMPLER TO specify or install than a light bulb controlled by a wall switch? Over-engineered versions, especially when developed without engineers, can really cause you to lose sleep. However, the real nightmare is the danger of simple products being hijacked by the Internet.

What keeps me up at night? Many things… When I’m focused on a client’s product requirements, it is making sure they match true market needs. Plus, dozens of other non-work related things like my children, the recent presidential election, the economy, … Thankfully I easily fall asleep shortly after my mind starts to rundown this very long list.

What actually kept me awake on my recent business trip? Poor product quality, improper system design, and a lack of planning for failure. At a brand-new hotel the fancy multi-button bedside controls for the room lights and curtains failed in two different rooms. In the first room, the lights would intermittently not switch off. And in the second room, the multiple ceiling mounted spotlights over the bed would not switch off – at all - when I attempted to go to sleep. There was a considerable delay at midnight to get a maintenance person to disconnect the wiring in the hidden electrical control panel. Unlike a desktop or floor lamp, these lights were too difficult to reach to unplug or unscrew without a ladder. I admit I was not thinking kind thoughts at that moment about the engineer who designed the system, the supplier of the system, nor the company that installed it.

This may have been both a quality control failure or “escape” at the supplier and at the time of installation. Quality is essential for any product or service. It is critical to determine how to assess and control the quality of any manufacturing or delivery process. Without proper quality systems, one does not know if the process is out of control which may result in big surprises later on. In the case of the hotel lights, it is clear that there was a quality failure – either in the physical hardware or during installation – since the system was clearly not operating as designed. Or, at least, how most “reasonable” users would expect. Perhaps there was a local tradition of punishing those who go to bed after 11 PM?

Luckily, enlightened product managers and designers do place quality on their list of product requirements. But do they always add safety and security? It depends on the perceived risk and complexity of the product in addition to regulatory requirements (if any). Where most will agree that quality control is an essential cost – especially when in the long run it may save money – some trade-off or fail to consider safety and security in order to reduce cost.

In the case of the hotel lighting system failure, there was clearly a lack of quality in the design process at either the control system or hotel design level since the designers failed to consider the system failure modes. (Who knows if there were actual engineers on the design team?) [And yes, this is a recursive thought since there is both quality of the manufacturing and delivery process in addition to the quality of the design process itself.] Done properly the system design would have included a Failure Mode Effect Analysis (FMEA) to identify most, if not all, possible failure modes along with countermeasures to eliminate or reduce the impact of the failures. Clearly the system was not designed to fail in a “safe mode”.

Failure of a switch? Use another switch for the same function. Failure of a curtain motor? Manually close the curtain. Failure of the logic control system? If the system could detect this, it should have turned itself off. But not every device can be “self aware” to detect proper operation. This is where the designers failed to provide a way for the user – not the maintenance technician – to override the system. Yes, there was a “Master” switch bedside but it was a master on/off “request” switch versus one that actually removed power from the entire system. Requiring a screwdriver to remove the back panel of the closet to access the logic control system to unscrew wires is neither user friendly nor the best design. This approach may have enabled the product or the system installation to hit the desired aesthetic and cost targets, but clearly it wasn’t designed for failure.

Many organizations “design” or plan for success but they don’t consider designing for failures in quality, safety, or security. We have come a long way in product design over the last twenty years. However, it is not clear that progress has been made in a user’s ability to remove the power source from many electronic devices. In the “real old days” of vacuum tubes almost all devices had a true “Mains” switch that cut the input power to the power transformer – i.e. the same as unplugging it. Because we are impatient and desire “instant television”, sets moved from truly turning off to going into standby mode. The television was really on (consuming power keeping the tubes powered up) but simply not displaying a picture on the cathode ray tube (CRT) to eliminate the need to “warm up”. Today, LCD screens use very little energy so there is little concern about them being powered up all the time. Since most new TV’s are connected to the Internet, perhaps we should instead worry about their capability of watching the viewers! (Read again: George Orwell’s 1984.)

History has repeated itself with smartphones. In the quest for making them thinner and smaller, most leading brands have removed the ability to remove the battery. Smartphones are never really off and a “hard reset” is a request to reset versus a true power on/off cycle. As Samsung just discovered with the Note 7 battery issues, changing to a non-removable battery led to their being banned from airplanes as these phones could not be safely carried in a true “power off” state.

As products and devices become more complicated, the digital circuitry and software become significantly difficult to thoroughly test. As such, the probability of security holes, test escapes, or latent defects (possibly introduced after test) increase with complexity. Even presuming robust quality and security processes, defects will occur. Therefore, it is essential for products to “fail safe” with unam-
biguous methods so that a user can shut down or reset a compromised or malfunctioning device. Without these capabilities, beyond mere inconveniences, we are putting ourselves at grave risk as the number of autonomous devices increase by the day – everything from self-driving cars to drones. This risk is compounded by the sheer number of devices that comprise the Internet of Things (IoT). The recent distributed denial of service (DDoS) attacks using approximately 100,000 compromised web and security cameras demonstrated the power of a small number (relative to the projected billions of the IoT) of simple devices. It is estimated that there are over half a million of these infected devices due to the manufacturer(s) shipping them with the same default password and the users choosing not to change them.

Researchers at the Weizmann Institute of Science recently demonstrated the ability to spread a worm among Internet connected light bulbs via their ZigBee mesh radio network. The worm allowed them to take control of the light bulbs and to spread to neighboring bulbs that were not configured on the same network. In this case, the researchers were able to bypass the manufacturer’s security using sophisticated techniques. They speculated on the ability to use a similar security breach to cause mayhem from power grid failures to epileptic seizure. In theory, these bulbs are simpler “things” than web and security cameras with no user controlled security features.

Combine these issues and add paranoia to keep us all up at night? How about a worm/virus that takes control of your smartphone and changes the battery charging parameters causing your battery to exploding or ignite?

In the development and design process, product designers, engineers, and product managers need to think about failure modes and ways to make their products safe and secure. We need to add security and safety to design for manufacturing, quality, support, etc. that is known as “DFx”: Beyond making a product elegant and intuitive to use, the design team needs to worry about how their product could be misused and what to do in case things go wrong. As it is said “Murphy was an optimist”…

In industries and product categories that do not have governmental nor voluntary safety and security standards, another role(s) should be added to the cross-functional design team to focus on safety and security. Either an internal resource or, better yet, an external resource who can provide the required perspective and breadth of experience to take an independent view is required. Yes, quality has fought hard for a seat at the product development table and now it is time for safety and security to join too!

For more of my thoughts, please see my blog http://hightechbizdev.com.

As always, I look forward to hearing your comments directly. Please contact me to discuss your thoughts or if I can be of any assistance. ◆

IRA FELDMAN is the Principal Consultant of Feldman Engineering Corp. which guides high technology products and services from concept to high volume manufacturing. He engages on a wide range of projects including technical marketing, product-generation processes, supply-chain management, and business development. (ira@feldmanengineering.com)
They’re Still Dancing

A YEAR AGO, I WROTE AN ARTICLE titled “Who’s Next on the Dance Floor.” It’s focus was on the rapid rise in the level of M&A activity in the semiconductor industry.

For several years, semiconductor M&A had been averaging about $12 billion per year. (See Table 1.)

I added up the deals in November, 2015 and the total was just north of $100 billion. You can’t get an exact count because not all deal sizes are disclosed and there is a time lapse between when deals are announced and when they close . . . or don’t close. It’s a bit like counting a room full of white cats. The general consensus is 2015 came in around $120 billion.

I don’t think there was any expectation that deals would stop just because we rolled from 2015 to 2016 . . . and that was indeed the case.

It is the end of the year again and the M&A tally is shown in the Table 2. At this point in time, it looks like 2016 will be similar to 2015 in number of deals in each size category and in total dollars. I excluded smaller deals that had no given deal size. (See Table 3.)

As last year, the growth to some degree is driven by trends that have been going on for years, such as the increasing cost of mask sets. Many designs continue to go up in complexity, taking them beyond the technical reach of smaller fabless companies.

The Internet of Things (IoT) and other smart technologies are continuing to grow and are becoming a focus for a lot of companies. To that end, companies are acquiring other companies that have enabling products, technology or IP to position them for a market that is expected to experience rapid growth. It is not a matter of whether IoT will happen, but rather in what myriad configurations it will reveal itself and how quickly it will grow over the next several years.

A new driver this year is the rapid rise in smart, autonomous vehicles of all sizes. Great strides have been made in the last year and lots of companies want to get a piece of the pie. I believe the major factor in Qualcomm’s decision to acquire NXP is its penetration in the automotive market to bolster Qualcomm’s small presence.

Having been in the industry for several decades and watching the fabless model create hundreds and hundreds of new companies over the past 25 years, it is interesting to watch as consolidation reverses the trend to some degree with a growing number of mega fabless/IDM companies. Nothing is forever . . . except change.

RON JONES is CEO of N-Able Group International; a semiconductor focused consulting and recruiting company. N-Able Group utilizes deep semi supply chain knowledge and a powerful cloud based software application to provide Conflict Mineral Compliance support services to companies throughout the semiconductor supply chain including fabless, foundry, OSAT and materials suppliers. Visit www.n-ablegroup.com or email ron.jones@n-ablegroup.com for more information.
2016 WAS A TURNING POINT FOR the Fan-Out packaging market since both leaders, Apple and TSMC changed the game and may create a trend of acceptance of Fan-Out packages. Yole Développement (Yole) is analyzing the current market and technologies trends and offers you to discover these results within a new report entitled Fan-Out: Technologies & Market Trends 2016.

TSMC investment in Fan-Out Wafer Level Packaging (FOWLP) and development of its Integrated Fan-Out (InFO) changed the wafer level packaging (WLP) landscape. Following high volume adoption of InFO and further development of embedded Wafer Level Ball grid array (eWLB) technology, a wave of new players and FO WLP technologies may enter the market. TSMC’s FO WLP solution called InFO will be used to package the Apple A10 application processor, implemented in the new iPhone 7 series… The success of FO packaging platforms is so undeniable today. What will be the status of the market tomorrow? What are the next steps of the leading FO players? Which technology will be the winning solutions?

“Production starts in 2016 and represents a big change in the Fan-Out industry for several reasons”, confirms Jérôme Azémar, Market & Technology Analyst, Advanced Packaging & Manufacturing at Yole. And he explains:

• First of all, in terms of volume, capturing the Apple processor market is a big asset for Fan-Out technology. iPhone 7 phones are expected to be sold in more than 200 million units.

• In terms of technology capability, it is also a major turn: processors require thousands of connections while the FO market was essentially focused on limited I/O count applications so far.

• Eventually, the potential for market spread is very high: the Apple brand brings more interest to the FO platform.

According to Yole’s advanced packaging & semiconductor manufacturing team, the market will actually be split into two types:

• The “core” market of FO, including single die applications such as Baseband, Power management, RF receivers, etc. This is the main pool for FO WLP solutions and will keep growing.

• The “high-density” FO market, started by Apple application processor engine (APE) that will include larger I/O count applications such as processors, memories, etc. This market is more uncertain and will require new integration solutions and high performing FO packages but has a very high potential.

Apart from TSMC, STATS ChipPAC is willing to make further investments powered by JCET, ASE extends its partnership with Deca Technologies while Amkor, SPIL, and Powertech are in development phase eyeing future production. Samsung is seemingly lagging behind and is considering its options to raise competitiveness.

“With such a high potential for the high-density FO and solid growth of the core FO, the supply chain is also expected to evolve with a considerable amount of investment in Fan-Out packaging capabilities”, asserts Jérôme Azemar from Yole. Several players are already offering FO WLP while many others are developing their competitive Fan-Out platforms to enter the Fan-Out landscape and enlarge their portfolio.◆
UTAC HOLDINGS LTD AND ITS subsidiaries (UTAC), is a leading independent provider of semiconductor assembly and test services for a broad range of integrated circuits including analog, mixed-signal, logic, memory and radio frequency. UTAC is the 6th largest OSAT in the world and among full-service assembly and test providers, UTAC’s test percent of revenue is the highest in the industry.

The Group offers a full range of package and test development, engineering and manufacturing services and solutions to customers who are primarily integrated device manufacturers (IDMs), fabless semiconductor companies, and wafer foundries.

First established in 1997, the Group’s customers span across all vertical markets including: mobile phone and communication, consumer, computing, automotive, security banking, and security identity, industrial and medical applications. Striving to maintain diversity across end markets not only helps to provide balance in the ebb & flow of product demand, it also positions them for growth in the overall industry with significant benefits from the proliferation of the Internet of Things (IoT).

As more devices become connected to the IoT, the need to safeguard information from cyber assaults is driving an increased demand for secure creation and management of devices and data. As a leading supplier of assembly and test services, UTAC plays a vital role in their customer’s manufacturing flow. Similar to quality initiatives, security compliance is regulated using industry standards and is administered at the UTAC corporate level. Today, 50% of UTAC’s factories are certified with EAL 6 / ISO standard ISO1540.

UTAC - SINGAPORE - TEST CENTER OF EXCELLENCE

- Experienced Team (average years on the job) Final Test, Wafer Probe & Post-Test Processes:
 - Engineering Managers 15 Years & Test Engineers 10 Years

- World Class Systems for OEE & Factory Systems with Online & Offline Engineering Analysis

- Operations with intrinsic ownership for Quality & Pervasive Continuous Improvement Culture.

- Proven Project Management methodology used for NPI Qualification, Safe Launch, Pre/Mass Production Release

- Driving on-going Innovations, Benchmarking & Value Creations with solide alignment with ATE & Systems Solutions Suppliers

- Wide range of configurations for Components, Integrated & Complex RF/Mixed Signal testing solutions

- Sophisticated and Competitive Technical Roadmap for higher pin count and higher parallelism

- Superior WLCSP engineering experience including BSP, Side-Wall Protection & AVI/EOL

UTAC’s Thin QFN .3mm VS. Standard QFN
ASSEMBLY SERVICES

UTAC offers a wide range of semiconductor assembly services to meet customers’ needs and the increasing market demand for next generation devices. UTAC has a diverse capability spanning across ten factories, in six countries in the Asia Pacific region. Their packaging capability includes Leadless Packages, Wafer Level Packages, System in Package (SiP), Laminate Packages, Leaded Packages and Security Smart Card Module and Smart Card Inlay.

To complement their packaging solutions, they have state-of-the-art design and package characterization capabilities to help customers achieve both performance and cost objectives. UTAC engineering teams collaborate closely with customers to understand the performance requirements and utilize proprietary calculators and design tools to accelerate the package design phase. Once the design is approved, UTAC uses a proven project management methodology to facilitate the new product introduction, taking the product through a rigorous phase gate process to ensure first time qualification.

TEST SERVICES

UTAC is a world leader in integrated circuits testing with more than 1,600 installed testers and a team of more than 300 experienced test engineers. Among full-service assembly and test providers, UTAC’s test percent of revenue is the highest in the industry. UTAC has wafer sort and final test capability in every factory location to provide a full turnkey product flow.

UTAC has extensive experience and capability to test all semiconductor device types in the industry: analog, mixed signal, logic, memory, CMOS image sensors, accelerometer MEMS sensors, radio frequency (RF) for radar, near field communications (NFC) and other RFID devices. Their test solutions include wafer probe (ambient, hot and cold), security black box wafer level encryption, final test, O/S test, reliability and failure analysis. With a centralized test development engineering team, UTAC provides test development (TD) services to customers worldwide. TD engineers work closely with customers to reduce costs and streamline process flows by ensuring test programs are optimized with the most effective test coverage and enable the shortest test times.

UTAC is a world leader in IC testing with more than 1,600 installed testers and a team of more than 300 experienced test engineers. Photo: UTAC Test Operation in Thailand.
UTAC’S OFFERINGS

Assembly Capability
• **Leadless Packages:** QFN, multi-row QFN, thin QFN, side-lead plating QFN, Cavity QFN, MEMS, Image Sensor and Cu Clip/Power
• **Wafer Level Packages:** wafer thinning, protective coating, saw & laser dicing
• **System in Package (SiP):** Laminate, Leadless, FC-SiP, QFN-SiP, Multi-Die SiP
• **Laminate Packages:** PBGA, FCBGA, CSP, FBGA, WCSP,
• **Leaded Packages:** PDIP, SOT, SOIC, TO, QFP

Laser Diode
• **Smart Card** Module Assembly & Inlay w/EAL 6 Common Criteria Site Certification

Test Services
• **High Volume Wafer Probe** (Tri-Temp)
• **High Volume Final Test** (Tri-Temp)
• Security **Black Box** Testing/Encryption w/EAL 6 Site Level Certification
• Burn-In Services
• Reliability & Failure Analysis Testing
• Production & Package Qualification

Research & Development (Assembly / Test)
• Package Design Consultation
• Thermal, Mechanical & Electrical Modelling
• Package Prototyping
• Material Selection & Benchmarking
• Test Program Development
• Test Program Conversion
• Test Hardware Design & Layout

UTAC has established agreements with several IC Bump companies to provide seamless, complete turnkey backend solutions for Fan-In and Fan-Out WLCSP as well as Solder Pillar Bump for Flip Chip. This seamless solution begins with state-of-the-art Bump technology through UTAC Wafer Sort, End-of-Line Processing and Ship.

BUMP CAPABILITY BY PRODUCT TYPE

- **Solder Bump**
- **Cu Pillar Bump**
- **WLCSP Ball Drop**
- **RDL**
- **Micro-Bump**
- **WLCSP (Plated)**
- **Au Bump**
- **Fan-out WLP (RCP)**
UTAC GROWTH MILESTONES

1997 United Test & Assembly Center Incorporated in Singapore (UTAC)
1998 Developed memory & DRAM turnkey test & assembly services
1999 Acquired test operations Fujitsu Microelectronics Asia
2003 Established China footprint in Shanghai
2005 Acquired Ultra Corp. to establish presence in Taiwan and add memory test and assembly services
2006 Acquired NS Electronics Bangkok to penetrate the Analog assembly market
2010 Acquired ASAT and its subsidiary in Dongguan, to enhance China footprint
2014 Acquired 3 Panasonic Plants; Singapore, Malaysia, & Indonesia; Launched Japan Sales Region and Offices
2015 Organic growth through product development and site certifications in key areas: MEMS, Cu Clip, Automotive & Security
2016 Qualification & high volume production ramp: MEMS, GQFN, Cu Clip, Automotive (SLP), & Security products: Smart Card Inlay, Smart Card Module, Secure IC Encryption Wafer Sort

UTAC FACILITY SNAPSHOT

Dongguan, China
Package Type:
• QFN
• QFP
• FPBGA
• FCQFN
• MODULE
• LGA
Operational Certs:
OHSAS18001,
ISO14001,
ISO9001:4003,
TS16949,
QC08000

Shanghai, China
Package Type:
• LGA
• BGA
• QFN
Operational Certs:
ISO 9001:2005,
ISO 14001:2008,
OHSAS18001:2012

Karawang, Indonesia
Package Type:
• QFP
• SOP
• TO
• F-LD
• TAPE/TAG
Operational Certs:
ISO9001 (1999),
ISO14001 (2000),
ISO27001 (2009),
OHSAS18000 (2011),
EAL 6 Site

Malacca, Malaysia
Package Type:
• SOT(SMD)
• TO(Power)
Operational Certs:
ISO9001:2008 (2012),
TS16949:2009 (2012),
ISO14001:2004 (2013),
ISO18001:2007

Serangoon, Singapore
Package Type:
• WLCSP
• FCQSP
• FCCSP - 95mm Singulation Saw
• Cap
• FCBGA
• BGA
• COB/CVM
Operational Certs:
ISO 9001, TS16949,
ISO14001,18001,
AEC-Q100, ISO/IEC27001,
ISO/IEC17025, EAL 6 Site

Bangkok, Thailand
Package Type:
• QFN
• FCQFN
• GQFN
• SMD
• FCSMD
Operational Certs:
OHSAS18001, ROHS,
Certified Sony Green Partner,
TS16949, ISO14001,
EAL 6 Site

Hsinchu City, Taiwan
Package Type:
• WLCSP
• BGA
• LGA
Operational Certs:
ISO9001/QS9000,
OHSAS18001, TQM,
ISO14000, QC080000,
ISO9001, ISO/TS16949,
ANSI ESD S20.20

Ang Mo Kio, Singapore
Package Type:
• CLCC/LGA
• BGA
• QFN
• SOP
• LDHU
• TO
Operational Certs:
ISO9001:2008, S16949:2009,
Die Attach Film Applications

Annette Teng
Chief Technology Officer
Promex Industries

DIE ATTACH FILM (DAF) AND DICING

Die attach film (DDAF) have been commercially available since 2000. Epoxy paste adhesives have historically been the sole epoxy material available for die attach, an integral part of component assembly, in particular for wire-bonded devices, but not quite applicable for flip chip assembly. DAF and DDAF are epoxy adhesives which are film based instead of paste based and are attached to the back of the wafer prior to dicing. DAF is sold by the supplier without a support dicing tape, whereas DDAF is sold by the supplier on a stretchable support dicing tape which is partially sawn and subsequently poked by ejector needles during automated die pick. DDAF has gained popularity due to the many advantages of film over paste, driven especially by the growth of stacked die architecture. Because there is no re-shaping of adhesive material from a drop-shape to a thin 2 dimensional layer, the process window for film is much wider than for paste material. Engineering intensive processes to control fillet shape, overflow, under-coverage and voiding are eliminated by the use of films. For very thin dies as well as for stacked dies, it is imperative to use film.

There are a handful of suppliers of wafer level DAF. Major suppliers provide the circular DAF sheets in rolls for automatic machine lamination such as shown in Figure 1. DAF can also be sourced as sheets for non-automated lamination. DDAF and DAF material have a shelf life of 6 to 12 months when stored at 0-10°C. They can also be stored at room temperature, but the expiration date is shortened by about half. Hence, the material is only made to order and major suppliers impose a minimum order of up to 300 sheets or 3 rolls. A non-conductive 8” DDAF is around $8/wafer but the conductive version is an order of magnitude higher in cost. One major manufacturer that has a silver filled DAF product will only sell to high volume users offshore. This limit on suppliers can make DAF less cost effective unless they use a subcontractor who has a well-stocked inventory. The cost per wafer of silver filled DAF may be higher, but with the savings in process steps and yield improvement, the cost is very comparable to paste.

Currently both conductive and non-conductive DDAF films are commercially available at various thicknesses. Most suppliers provide 20 to 25µm as a standard thickness option. Lower 10µm thickness DAF is available but maybe a challenge to procure for low volume users. Electrically and thermally conductive silver filled films are also available at 20-25µm thickness and have been deployed at Promex for many QFN device assemblies. QFNs with silver DDAF have passed JEDEC MSL3 for 8x8mm QFN from Promex. However, many high-end applications require higher thermal conductivity and have resorted to DAF with diamond fillers instead.

Promex has been assembling multi-die stacks with diamond filled DAF successfully. Figure 2 shows a cross-section of a 7-die stack die device using a diamond filled film. The silicon wafers have been thinned to 200µm before laminating onto the diamond filled DAF. The die on the device wafers with DAF were singulated using a dual spindle dicing saw as shown in Figure 3. Saws with single spindle are not recommended as adhesive stringers and conjoining of die may result. After singulation, die attach using a Datacon 2200 with a heated stage was performed. Each die is pressed down on a heated substrate at a force recommended by the supplier which keeps the die firmly anchored in place. An example of a wafer with silver epoxy DAF during Datacon pick is shown in Figure 4. All DAF’ed die must be subsequently cured at higher temperatures around 150-165°C for 1 hour. One of the biggest advantage of film over paste is the absence of out-gassing or void formation during oven cure.
affecting wirebond integrity. Saw dicing parameters must be optimized to eliminate such stringers. Another reject is conjoined die found during pick which is caused by inadequate adhesive singulation due to improper blade depth or worn out blades. Lasers can be used for the singulation of DAF wafers however, this is only cost effective for high volume manufacturing.

Die attach films can also be applied to non-die attach processes such as lid

Table 1.

<table>
<thead>
<tr>
<th>ADVANTAGE COMPARISON</th>
<th>DIE ATTACH FILM</th>
<th>DIE ATTACH PASTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paste Dispense machine set-up</td>
<td>None (less set-up dies)</td>
<td>Engineering intensive & more set-up dies/wafers</td>
</tr>
<tr>
<td>Requirement of dies/wafers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch oven curing 1hr at 150C-165C</td>
<td>Partial cure OK with full cure during wirebond</td>
<td>Must Cure 100% prior to wirebond</td>
</tr>
<tr>
<td>UPH improvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die to pad size ratio</td>
<td>1.0</td>
<td>Less than 0.9</td>
</tr>
<tr>
<td>Die strength during pick</td>
<td>Reinforced by DAF</td>
<td>No reinforcement</td>
</tr>
<tr>
<td>Wafer warpage during handling</td>
<td>Reinforced by DAF</td>
<td>No reinforcement</td>
</tr>
<tr>
<td>Bondline</td>
<td>Consistent</td>
<td>Must monitor</td>
</tr>
<tr>
<td>Die pick Issues</td>
<td>Con-joined dies</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Missing adhesive</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Stringers</td>
<td>None</td>
</tr>
<tr>
<td>Die tilt and fillet issues</td>
<td>None</td>
<td>Must monitor</td>
</tr>
<tr>
<td>Pot life before cure</td>
<td>Hours/day</td>
<td>Minutes<4hrs</td>
</tr>
<tr>
<td>DA Cure Issues</td>
<td>Voiding</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Bleed out</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Shrinkage at corners</td>
<td>None</td>
</tr>
</tbody>
</table>

Figure 4. Singulated die on Silver filled DDAF being picked by the Datacon.

Figure 5. Adhesive presence on backside of die.

Figure 6. DAF stringer.
sealing and wafer bonding. At Quik-pak, where Open molded cavity plastic packages (OmPP) are made in array form as shown in Figure 7, various DAF materials were evaluated for sealing a large panel lid. OmPP are made by molding walls on QFN lead frames with standard thermoset mold compounds. OmPP packages can be temporarily sealed to provide engineers with the flexibility to test and debug rapidly. They can also be effectively overmolded by dispensing epoxy to fill the cavity and curing. And, these cavity packages can be lid-sealed for MEMS and sensor products. Lid sealing can be done either individually or in panel form utilizing DAF, with a preference for the latter for cost savings.

A comparison of 5 DAF types from several suppliers showed one DAF type that produced 100% yield on lid seal integrity. For each DAF type, a panel of OmPP packages, namely, QFNs, was panel lid sealed under thermal compression and then saw singulated. One DAF product yielded 108/108 pass on visual in 10X magnification with no voids on all 4 sides of the singulated QFNs. Figures 8a and 8b shows the sidewall of the ceramic lid over the QFN with a very uniform bondline of 20-25 µm in thickness of DAF. 15/15 units passed after been subjected to a Fluorinert™ leak test (Mil. Std. 883 Method 1014 Condition C1) with no preconditioning to catch leakers by the presence of escaping bubbles.

Furthermore, lid shear of the lidded QFN showed high strength with adhesive fracture as revealed by adhesive residues on both lid and package surfaces (Figure 9). Table 2 shows the lid shear results in excess of 10Kg for a 28 leaded OmPP QFN package.

Summary and Conclusion

In this article, DAF is shown to be well established as a standard die attach material and can also work as a lid seal material for open cavity panels. Many types of DAF, including silver filled electrically conductive, diamond filled thermally conductive as well as non-conductive DAF for various complex microelectronic assemblies have been successfully implemented.

References

Acknowledgements

The author would like to acknowledge Dr. Suzette Pimple and Anthony Lazula of Promex and Ilene Arciaga, previously of Quik-pak for their work on DAF.
Tuesday, February 14, 2017 | 8:30am–9:30am
Mayim Bialik, Actress & Neuroscientist
“The Big Bang Theory – Making Science Cool (and Funny)”

Wednesday, February 15, 2017 | 8:00am–9:00am
Mary (Missy) Cummings, Naval Officer, Military Pilot & Professor, Duke University
“The Future of Drones”
Five Industry-Leading Packaging Technologies

IC packages for implementing next-generation devices to support the connected world of the future

Ron Huemoeller, Adrian Arcedera and Rama Alapati
Amkor Technology

OVER THE PAST FEW YEARS, THERE has been a significant shift from PCs and notebooks to smartphones and tablets as drivers of advanced packaging innovation. In an industry segment that has grown accustomed to a multitude of package options, consolidation could produce “The Big Five” advanced packaging platforms. These include low-cost flip chip, wafer-level chip-scale package (WLCSP), microelectromechanical systems (MEMS), laminate-based advanced system-in-package (SiP) and wafer-based advanced SiP designs. (See Determining the Big Five below.)

Low-Cost Flip Chip

Unlike the other four platforms, flip chip is not a package platform, but an interconnect method that uses bumps instead of wire bonds to connect the various circuits as well as attach the die to a package substrate. In the case of flip chip, connections are formed over the surface of the die area rather than at the package perimeter, as is the case with wire bonds. Flip-chip technology enables several ball grid array package families. Although WLCSP also uses interconnect bumps, the main distinction between a WLCSP and a flip-chip package is that after the bump process, the WLCSP die is mounted directly on the printed circuit board and does not have a package substrate.

While WLCSP has been the go-to package of choice to meet mobile product requirements, WLCSP reaches a point where it is limited by its die size and the number of I/O it can support. According to Yole Développement, that magic number is roughly 500, typically in an 8 x 8 mm² package. Many industry analysts view fan-out wafer-level packaging (FOWLP) as the solution to the increased I/O problem, since it enables higher density by expanding the footprint to slightly larger than the die size - and has lower cost than the flip-chip alternative today. However, emerging low-cost flip-chip solutions will provide more viable alternatives and create the next package platform to pick up where WLCSP leaves off.

Associating “low cost” with “flip chip” may seem like an oxymoron because the early adopters of flip-chip packages were high-performance devices like CPUs, graphical processing units (GPUs) and chipsets. However, as flip-chip processes have matured, the associated costs have been reduced, while still maintaining the performance benefits, making it the ideal platform for other IC technologies such as RF, FPGAs, ASICs, memory, CMOS image sensors, LEDs, and more. In fact, the newest low-cost flip-chip solutions are not only very cost competitive to FOWLP, but they are also competitive in thinness as newer methods are implemented.

Additionally, despite the recent hype regarding FOWLP, it is important to remember that low-cost flip-chip packages are currently dominating the advanced packaging market. Why? Because it’s still a better choice than FOWLP for most applications. In fact, FOWLP is cur-

DETERMINING THE BIG FIVE

To zero in on “the Big Five” semiconductor packaging technologies, a team of packaging experts identified five key platforms that they believe will be leveraged across a multitude of applications and markets - both now and in the future. The selected platforms are currently in different stages of adoption and production, and will hold up through generations of development to continue serving the industry needs. The figure shown at right lists the market segments (mobility, Internet of Things (IoT), automotive, high-performance computing (HPC) and memory) and identifies which markets are served by one or more of these platforms.

The Big Five packages target different market segments.
performing, most reliable semiconductor package platforms on the market today. From a market perspective, WLCSP is ideally suited for, but not limited to, mobile phones, tablets, netbook PCs, disk drives, digital still and video cameras, navigation devices, game controllers, other portable/remote products and some automotive end applications.

Perpetual innovation is intrinsic to packaging success and focuses on driving existing technologies to lower cost points. With the anticipated growth in the WLCSP market, there are many reasons for improving and optimizing the WLCSP manufacturing process. A good example of optimization is the implementation of die sidewall protection. Although most WLCSPs are not molded, a method has developed to provide mold-like die surface protection. Using this approach, a molding compound is injected into the saw streets and then the wafer is diced again, creating five- and six-sided molded WLCSPs (see Figures 2a and 2b). This process is currently available, and customers are now designing it into their WLCSP requirements.

As flip chip continues to evolve, it remains more economical and more reliable than most fan-out packages. Investments in low-cost FCBP technologies have created economies of scale and are driving down the unit cost. FCBP’s use is expanding beyond the computing, mobile and wireless markets, extending into automotive and medical, as well as the next big wave for low-cost applications: the wearable device market for the IoT.

WLCSP: The Workhorse of Advanced Packaging Technology

A WLCSP is a single-die package, limited by the die size, which includes wafer bumping (with or without pad layer redistribution), wafer-level final test, device singulation and packing in tape and reel to support a full turnkey solution.

Now in volume production, WLCSP is the workhorse of the Big Five advanced packaging technologies due to its cost/performance ratio resulting from the elimination of the package substrate. Packaging considerations start with WLCSP, and only move to other formats when routing requirements exhaust the available real estate. Ultimately, customers will choose WLCSP over the other package options where technologically possible because it is the lowest-cost package.

Also known as fan-in wafer-level packaging (FIWLP) industry-wide, WLCSPs are applicable to a wide range of markets and are generally related to analog and mixed-signal, wireless connectivity and automotive device categories. Typical applications include integrated passive devices, codec, power amplifiers, IC drivers, RF transceivers, wireless local area network chips, GPS and automotive radar. WLCSP offers the lowest total cost of ownership, enabling higher semiconductor content while leveraging the smallest form factor. It is one of the highest-performing, most reliable semiconductor package platforms on the market today.

While many industry analysts proselytize FOWLPs as a lower-cost alternative to WLCSP than flip-chip CSPs (FCBPs), FOWLP is lower cost only when the ratio of the package body size to the die size is nearly the same or only slightly larger. Figure 1 illustrates this relationship. The cost of the redistribution layer (RDL) is integral to the overall cost of the package. Standard WLCSP has the lowest-cost RDL impact, although as previously mentioned, its package size is limited to die size only. As the ratio of body size to die size increases, low-cost FCBP structures become more favorable from a price point perspective. When the package body size is greater than 1 mm more than the die size, the cost for wafer-level redistribution becomes sufficiently high making FCBP the best path for cost.

As flip chip continues to evolve, it remains more economical and more reliable than most fan-out packages. Investments in low-cost FCBP technologies have created economies of scale and are driving down the unit cost. FCBP’s use is expanding beyond the computing, mobile and wireless markets, extending into automotive and medical, as well as the next big wave for low-cost applications: the wearable device market for the IoT.
MEMS Packaging

Many leading companies and industry experts predict that the growing trend for smart devices (smart cars, smart cities, smart factories and more) will result in the deployment of a trillion sensors, many of which will use MEMS technology. However, MEMS devices are not standard integrated circuits. Creative wafer fabrication techniques produce Si-based transducers and actuators that respond to or interact with, external or environmental stimulus.

At the onset of MEMS packaging, priority was given to solving the end-market application over cost and package form factor. This created a broad diversity of package form factors, with a different approach for almost every application and end market. As the MEMS market grows and transitions into high-volume production, package and test standardization is needed to offer cost-competitive solutions without sacrificing performance. The requirement to control stress to the MEMS structure while allowing stimulus to go through remains the same. The combination of a standard cavity packaging platform and optimized material sets will ensure a near-stress-free environment that allows the MEMS device to function as it was designed to in the real world.

Amkor’s focus is creating a standard cavity package platform that will provide the flexibility to support multiple MEMS applications. It will be customizable on the inside while remaining standard on the outside to maintain maximum compatibility during assembly, final test and surface board mount. The standard MEMS platforms will also allow the use of other packaging techniques like FlipStack® technology, through silicon via (TSV), Cu pillar and die stacking for MEMS sensor fusion and IoT applications. Figure 3 shows examples of these packaging approaches.

Sensor fusion, where software combines the data from different sensors to reduce application uncertainty, leverages all types advanced packaging expertise to integrate different MEMS and sensor functionalities with data processing ICs in multi-die packages. FlipStack CSP technology is an example of sensor fusion, where the bottom ASIC die is a flip chip, and the MEMS die is stacked on top and wire-bonded to reduce the overall package footprint.

Advanced MEMS packaging platforms will be essential to achieving the deployment of anything close to a trillion sensors.

Laminate-based Advanced SiP

Traditional laminate-based SiP solutions have existed for some time and have been manufactured by electronic manufacturing services (EMS) providers with printed circuit board (PCB) assembly design rules and relaxed form factors. Advanced laminate-based SiP solutions, on the other hand, are more complex systems that are miniaturized using tighter and smaller outsourced assembly and test (OSAT)-based assembly capabilities. Advanced laminate-based SiP solutions serve a higher end of the market. This is the case for 4G/LTE RF front end modules (FEMs) which require the complex integration of filters, mixers, demodulators, amplifiers and discretes in a highly dense form factor with ultra-low interconnect parasitics.

Advanced SiPs integrate disparate technologies, such as a small microprocessor with embedded memory, a sensing element such as a MEMS device or image...

Figure 2a. 5-sided molded WLP (CSPnl™ technology).

Figure 2b. Top-down view of 5S molded WLP (CSPnl technology).

Figure 3. MEMS and sensor standard package platforms.
sensor, RF die and power management ICs in a very small form factor. In these designs, it is not unusual to find various different interconnects such as wire bond, flip-chip and WLCSP BGA along with surface mounted components.

The laminate-based advanced SiP qualifies as one of the Big Five packaging technologies because it fits the bill for new market growth areas, providing a great deal of value in terms of form factor and increased functionality at a cost point that accelerates product penetration in new and existing markets. For example, laminate-based SiP solutions can enable miniaturized cost effective solutions in the consumer and industrial IoT space, since they integrate increased functionality and component counts in very small form factors.

Laminate-based SiP solutions that are currently in production achieve the lowest form factor at cost and performance points that address market needs in RF, storage, automotive, IoT and power segments. In addition, a core design kit enables customers to do module and substrate design and also supports system modeling, characterization and full-turnkey services to achieve the smallest form factors and fastest time to market.

Wafer-based Advanced SiP

Similar to a laminate-based advanced SiP, a wafer-based advanced SiP allows for the integration of complex and disparate technologies, but meets the higher performance requirements for bandwidth, form factor and density requirements in high-performance computing (HPC), IoT, mobility and automotive segments. In addition to integrating basic microprocessors, sensing elements (MEMS or image sensors), RF dice and power management ICs, a wafer-based advanced SiP can integrate memory (high bandwidth memory (HBM), Hybrid Memory Cube (HMC), and others), ASIC devices and high-performance processors, such as GPUs and FPGAs. This final segment of the Big Five is the technology that serves the widest scope of applications.

The wafer-based advanced SiP is currently targeted for high-end devices and is still in the early introduction phases to the industry. It effectively addresses system scaling needs and can help offset or delay the need for next-generation Si node based products. Its initial market entry points are based advanced SiP family include high-density fan-out wafer-level packages such as the SWIFT™ and SLIM™ product lines. These configurations use a “die last” approach that minimizes the yield loss risk prevalent in the complex die first WLFO packages. SWIFT is expected to ramp to production in the next few quarters and become a predominant driver of wafer-based advanced SiP products. The SLIM and SWIFT small body sizes have passed chip-package interaction (CPI) qualifications, with large body sizes in development. Also on the wafer-based advanced SiP roadmap are 2.5D interposer and 3D IC stacks. The 2.5D TSV is available today, having been qualified since 2013. Working with ecosystem partners provides a seamless supply chain and qualified Si portfolio and also enables co-design by providing design kits for each of the wafer-based SiP platforms. Figure 4 shows these packaging approaches.

Advanced Packages for Today and the Future

The mobility market is driving form factor reduction and high-density interconnects for multi-die integration. In the HPC, networking, deep learning and GPU applications, wafer-based advanced SiPs address the power, memory bandwidth and latency issues of new devices coming to the market in the next couple of years. The 2.5D, 3D, SLIM and SWIFT technologies can potentially help OEMs and fabless companies delay migration to the next node by enabling system-scaling approaches through wafer-based SiP technology.

Wafer-based advanced SiPs round out the Big Five portfolio, allowing continued innovative choices that will help achieve the best performance, form factor and value-to-cost ratio for any application.
AS THE MEMS-BASED SENSING industry grows, the environmental conditions in which these sensors must perform grow with it. Pressure sensing is one application of MEMS-based sensing where particularly harsh environments can be present. Examples of common challenging environmental conditions include automobile exhaust, fuels, refrigerants and atmosphere with moisture and ice. Unlike previous technology, which used large mechanical assemblies and welded or soldered interconnects in the fluid path, the MEMS-based technology offers the ability to place the microscopic sense element and wire bond interconnects directly in the fluid path. As a result of the harsh environment and exposed assemblies, it is often necessary to protect the sense element and interconnects with products such as encapsulation gels.

The first step in the process of protecting exposed MEMS-based assemblies is to select the proper gel for the design intent of the product and for the environment in which it will serve. Protective gels have come a long way in recent years with a virtually endless selection of silicone dielectric encapsulation gels. Typically encapsulation gels are selected based on desired final product properties, such as viscosity after cure and chemical properties best suited for the end-use environmental conditions. The manufacturing procedures for using gel are often overlooked in the initial design process, and must be reconciled by the process engineering team.

Once the design is complete, a process is developed by the engineering team to properly apply the correct amount of gel to best serve the end-use application without creating unintended consequences. These requirements compel the satisfaction of four critical factors during the application process:

1) complete gel coverage of critical components, 2) elimination of all air voids in the gel, 3) proper and complete cure, and 4) a controllable process with a measurable output.

Attaining and maintaining complete gel coverage over all critical components seems like a straightforward process. Verification of the gel dispense process ensures coverage of all critical components, but with shrinking product packages and complex layouts, an unobstructed view of critical areas is not often obtainable. At SMART Microsystems, analysis techniques, such as acoustic microscopy and 3D X-ray, are used to develop and validate gel dispense procedures during the initial design process (see Figure 1). These tools allow inspection inside of the part after dispense, confirmation that the product is properly protected, and verification that the gel dispense parameters have achieved the desired result.

The root cause for the prevailing gel dispense failure mode which plagues most MEMS-based sensor product designers is air voids trapped in the gel. For pressure sensors with gel in the fluid path, entrapped air in the gel will move under pressure and apply unintended and potentially damaging stress on the sense element and on the interconnects. This can cause premature output shift or product failure. Most silicone gels are hygroscopic in nature—they readily absorb moisture. In typical product designs the hygroscopic gel is placed in the fluid path. The hygroscopic nature of the gel and exposure to the fluid path will cause the gel to collect moisture in any air voids present. The moisture-filled voids immediately become a source of corrosion. For process engineers that have experience in gel dispense procedures, preventing air voids is the primary condition that must be accommodated during product and process design. This requires careful vacuum degas of the gel prior to dispense, with additional centrifuge use as needed due to the intrinsic properties of the gel. A post-dispense degas may also be required due to product design, such as if the product geometry entraps air.

Heat cure encapsulation gels are the preferred choice for many MEMS-based sensor products because they offer a complete cure. Heat cure encapsulation...
When You Need Reliable MEMS & Sensor Interconnects
Make the SMART Choice.

Creating robust and reliable interconnects for new technologies presents a series of new obstacles. Despite this, problems encountered as a result of custom packaging, unique geometry, and unusual material limitations can be overcome. Using a combination of well understood processes (such as wire bonding), emerging technologies (such as isotropic conductive adhesive) combined with creative engineering, SMART Microsystems can develop reliable interconnect processes for your new technology.

SMART Microsystems creates turn-key solutions for microelectronic package assembly challenges to move your MEMS sensor technology from development to production. With an engineering team experienced in manufacturing and state-of-the-art facilities, SMART Microsystems accelerates the transition of your new MEMS sensor product to the market.

Call us today at 440-366-4203 or visit our website for more information about SMART Microsystems capabilities and services.

SMART Microsystems
Your Microelectronic Package Assembly Solution for MEMS Sensors
141 Innovation Drive, Elyria, Ohio 44035 • info@smartmicrosystems.com
www.smartmicrosystems.com
Your Microelectronic Package Assembly Solution for MEMS Sensors

Not all MEMS sensor designs require dielectric encapsulation gel protection, but many on the front-line of harsh environmental sensing do. It is important to the end-use product viability that the process of protective gel encapsulation is designed and validated properly. Engineers at SMART Microsystems understand from experience that encapsulation gel is not simply a corrective action to a preexisting failure mode. Gel encapsulation is a process which is performed with equal diligence in design and development to wire bonding, die attach, assembly, and many other process crucial to the end-use sensor and the same diligence is observed throughout production.

For more information about SMART Microsystems services visit their website at www.smartmicrosystems.com.

The SMART Advantage. **Lowest Overall Development Time and Cost.**

PROTOTYPE DEVELOPMENT
- Proof of Concept and Feasibility
- Process Development
- Engineering Expertise

ENVIRONMENTAL LIFE TEST
- Identify Reliability Issues
- Avoid Issues in Field of Use
- Turnkey Testing and Overflow Support

MANUFACTURING SERVICES
- Scale Up
- Low-volume Production
- Quality Assurance
their capabilities in form of Assembly Design Kits (ADKs).

How Can IC Designers, EDA and IP Vendors, Foundries and Assembly Houses Work Together

The rest of this article will focus on the importance of ADKs and the roles of and data/product flow between these five EcoSystem partners. It also will outline how ADK and reference flow enable multi-die IC designers to walk the narrow road between costly over-designs and risky/unreliable under-designs. Together with die-level IP building blocks, ADK and reference flow offer a solid platform for multi-die IC design. This “three legged stool” will encourage many more IC designers to evaluate and choose multi-die solutions. Only then the IC manufacturers will be able to recoup their already significant investments in multi-die IC manufacturing equipment, flows and newly formed relationships with supply chain partners.

Figure 2 outlines the Multi-die IC EcoSystem and shows in green how the proven fabless/foundry cooperation dovetails into the emerging Assembly Design Flow and how 3rd party IP building blocks contribute to multi-die design and manufacturing.

This modular approach, combining one or more proprietary dies, manufactured in their most suitable process technology, with one or more 3rd party IP building blocks demonstrates how similar such a modular multi-die IC design project is to a system design approach and how much flexibility it offers, while significantly improving performance and reducing power, development cost and time to profit.

The green portion of Figure 2 also shows that multi-die IC technologies DO NOT REPLACE our proven SoC technology. To the contrary, they integrate proprietary SoC dies as differentiators into the multi-die EcoSystem and add to these SoCs more market value by combining such proprietary designs with off-the-shelf 3rd party IP. The high bandwidth memory cubes (HBMs) are such 3rd party die-level IP building blocks, already in use. SERDES dies, data converters, power management ICs (PMICs), all in die form, are other examples for how 3rd party IP complements and add value to one or more proprietary SoC die(s).

The yellow part shows that the role of EDA is to automate development of ADKs and to provide tools for planning, design and verification of multi-die ICs. Like foundries, assembly houses benefit significantly from highly automated flows for characterization of package materials and active as well as passive components. Streamlined model creation is also important. Data encryption protects proprietary know-how. Designers appreciate user-friendly tools, accurate and up-to-date information about multi-die assembly flow as well as materials, components and equipment capabilities. These help designers significantly to minimize iterations and reduce time to profit and enable them to walk the narrow road between costly over-design and risky/unreliable under-design.

The red arrows show how 3rd party IP can flow into the design steps as models and into the manufacturing steps as die-level IP building blocks, to be combined with the customers’ proprietary die-level IP building blocks. Because die-level IP building blocks can be manufactured in their most suitable process technologies, they offer lower cost per function and best performance per Watt.

How Close is Such an EcoSystem to Becoming Reality?

Parts of this design/manufacturing EcoSystem have been in use for many years, to design and assemble SiP and PoP multi-die ICs.

Amkor and Cadence announced in Spring 2016 the start of a joint Package Assembly Design Kit (PADK) development, in support of advanced IC packaging technologies.

Please contact them or your EDA and assembly partner(s) to learn about their current capabilities and plans.

HERB REITER founded eda2asic Consulting, Inc. in the spring of 2002 with the intention to focus on increasing the cooperation between EDA suppliers and semiconductor vendors. Herb earned an MBA at San Jose State University and Master Degrees in Business and Electrical Engineering at the University and the Technical College in Linz/Austria, respectively. Herb has also taken more than forty Continuing Education courses at Stanford University in recent years.
Everything-Proof: The Future of Mobile and Wearable Devices

Raj Peddi
Henkel Adhesive Electronics

CONSUMERS’ GROWING DEPENDENCE on mobile devices now extends well beyond the communications realm and into health, fitness, entertainment, transportation and more. With this reliance on smartphones, fitness bands and connected watches also comes huge expectations: expectations for reliability, expectations for enormous functionality, expectations for exceptional design and, yes, expectations for extreme durability.

In the early days of smartphones, users were generally happy if they could drop their phone with little consequence. The ability to cope with an occasional spill of a common beverage or sweat during those 6 a.m. workouts was also a nice-to-have. As reliability and environmental durability incrementally improved, so, too, did consumer demands. The quest for more features in shrinking dimensions continues to place huge pressure on thermal management, protection of exceptionally small and delicate components, EMI capability and reliable interconnects. Remarkably, many of these challenges have already been addressed. High-performance, re-workable underfills, capable thermal materials in pad, film and liquid formats, unique package-level EMI alternatives and game-changing solder pastes have, indeed, enabled the smallness, performance and reliability of today’s mobile devices.

Now what? Top on the wish list has to be waterproof durability. Water resistance is something consumers have longed for and considered by some as a virtual smartphone utopia. As most smartphone owners have probably experienced the unfortunate result of a wet mobile phone, the idea that this could someday be avoidable is enticing. To be sure, leading smartphone manufacturers have already made moves in this direction, as evidenced by recent promotions of the sort. However, reaching true waterproof status for the entire phone, watch or fitness band is a tall order but one where significant progress is being made.

The product design and material selection considerations for ensuring water resistance are immense and extend from the PCB, where conformal coatings play an important role, to sealants for camera modules and, yes, even elimination of external jacks and connector ports.

As a leading provider of adhesive solutions for camera module assembly, Henkel has developed a full suite of materials that enable advanced camera module technology – from lens bonding to attachment of the lens holder to the substrate to voice coil motor bonding and everything in between. Now, in a new breakthrough, Henkel has developed a waterproof sealing adhesive for camera module lens bonding – yet another milestone on the path to fully waterproofed smartphones. LOCTITE ECCOBOND LS 3106P is an optically clear adhesive that effectively seals all of the lenses within a lens house bonding for both auto focus and fixed focus lenses, protecting the optical components against damage from water.

The new adhesive has a low thixotropic index, making it ideal for filling the small gaps present in a lens assembly. This material characteristic allows LOCTITE ECCOBOND LS 3106P to flow easily without added pressure and provides excellent coverage for complete self-sealing. What’s more, the thixotropic index of LOCTITE ECCOBOND LS 3106P shows very little change over time with similar performance at 30 days and 90 days. A long pot life allows manufacturers to minimize waste, as the adhesive can cope with continuous use for up to 60 days with no material degradation. In addition to these benefits, LOCTITE ECCOBOND LS 3106P has exceptionally low weight loss, indicating minimal outgassing for robust performance. The lens module’s operation is dependent upon the optical lenses, so any outgassing during the cure process could fog the lenses and affect the performance of the camera. Henkel’s waterproof sealant remains stable during UV curing without any outgassing, ensuring predictable lens operation. LOCTITE ECCOBOND LS 3106P also exhibits very low shrinkage, which is critical for fragile, thin lenses and alignment accuracy as shrinking of the material post-cure can result in shifting alignment or impaired lenses. With no change in linear shrinkage post-cure, LOCTITE ECCOBOND LS 3106P protects against lens misalignment and/or damage.

While all of these material properties are critically important, LOCTITE ECCOBOND LS 3106P’s primary function is waterproofing and here, too, the adhesive delivers. In waterproof simulation testing, LOCTITE ECCOBOND LS 3106P survived complete water submersion. The test vehicle was sealed with the adhesive and submerged in water for 24 hours at room temperature, following which it was exposed to an 85°C/ 80% relative humidity (RH) environment. The material showed no water leakage or swelling following the 24 hour submersion or the 85°C/85% RH exposure.

Henkel’s LOCTITE ECCOBOND LS 3106P is one of many elements required for the waterproofed smartphones and wearables of the modern era. With success already proven with newer-generation devices, LOCTITE ECCOBOND LS 3106P is helping to facilitate the future of mobile durability.

To find out more, visit www.henkel-adhesives.com/electronics.
The smaller the device - the more solutions

No matter where you are or what your process requires, you can count on Henkel's expertise. Our unmatched portfolio of advanced materials for the semiconductor and assembly markets all backed by the innovation, knowledge and support of Henkel’s world-class global team ensures your success and guarantees a low-risk partnership proposition.
Assembly Design Kit (ADK) for Multi-die ICs

Moving from Moore’s Law to More-than-Moore is like the change from IDMs to the fabless model

Herb Reiter
ed2asic Consulting, Inc.

IT TOOK SOME TIME TO TRANSITION our industry from the IDM model to the well-functioning cooperation between fabless IC vendors and foundry partners. In addition to establishing new business models, IC designers and wafer foundry experts as well as EDA vendors and IP providers needed to be trained in how to best work together. To make the technical cooperation between these four camps low risk, efficient and cost effective, they jointly built an EcoSystem with these major elements:

a) Process Design Kits (PDKs), to convey the foundry capabilities and constraints,
b) Low-level libraries, memory compilers, soft and hard IP blocks and
c) User friendly Reference Design Flows, to enable IC designers to fully utilize a) and b)

These are still the key elements for success of the rapidly expanding fabless / foundry cooperation.

As further shrinking of transistor feature sizes is getting much more costly and difficult, both in regards to IC development time, NRE and transistor cost, following Moore’s Law is no longer economical for many medium to higher volume applications. Also as semiconductor experts notice, demand for heterogeneous function is increasing rapidly. Figure 1 shows that the revenues for heterogeneous functions already exceeded the worldwide revenues for digital functions in 2015.

Advanced packaging technologies (PoP and SiP) are offering proven ways to combine multiple known good dies (KGDs) in one package. However, footprint and height limitations for mobile, wearable as well as other applications demand smaller packages. In addition, market needs for higher performance and lower power have encouraged the IC manufacturing community to develop a range of advanced IC packaging technologies, such as 2.5/3D-ICs and, more recently, multi-die Fan-out Wafer-level Packages (FO-WLP).

Recent iPhone 7 teardown reports confirm that Apple chose TSMC’s new InFO packaging technology to vertically stack logic and a DRAM, to save footprint, increase bandwidth as well as reduce cost, latency and power of the A10 application processor. This high-volume design is accelerating the development of similar advanced packaging technologies at other foundries and at assembly & test houses (OSATs).
Packaging Solutions for Smartphones and Tablets

- Wafer Level Chip Scale Packages
- Laminate-Based Advanced SiP
- Wafer-Based Advanced SiP
- Low-Cost Flip Chip
- MEMS

Enabling a Smart World

As one of the world’s largest suppliers of outsourced semiconductor packaging, design, assembly & test services; Amkor helps make “next generation” products a reality.
Magazines and Carriers for Process Handling Solutions

Grip Ring Magazines
Grip Ring Shippers
Film Frame Magazines
Film Frame Shippers
Grip Rings
Lead Frame Magazines - F.O.L./E.O.L.
Stack Magazines - E.O.L.
Process Carriers (Boats)
I. C. Trays - Multi-Channel
Boat Magazines
I. C. Tubes and Rails
Miscellaneous Magazines
Substrate Carrier Magazines
TO Tapes & Magazines
Wafer Carriers

Accept Nothing Less.

Perfection Products Inc.
1320 S. Indianapolis Ave. • Lebanon, IN 46052
Phone: (765) 482-7786 • Fax: (765) 482-7792
Check out our Website: www.perfection-products.com
Email: sales@perfection-products.com